0000000000306983

AUTHOR

Héctor Ramírez

0000-0002-7662-486x

Phenomenological approaches of inflation and their equivalence

In this work, we analyze two possible alternative and model-independent approaches to describe the inflationary period. The first one assumes a general equation of state during inflation due to Mukhanov, while the second one is based on the slow-roll hierarchy suggested by Hoffman and Turner. We find that, remarkably, the two approaches are equivalent from the observational viewpoint, as they single out the same areas in the parameter space, and agree with the inflationary attractors where successful inflation occurs. Rephrased in terms of the familiar picture of a slowly rolling, canonically normalized scalar field, the resulting inflaton excursions in these two approaches are almost ident…

research product

Current status of modified gravity

We revisit the cosmological viability of the Hu-Sawicki modified gravity scenario. The impact of such a modification on the different cosmological observables, including gravitational waves, is carefully described. The most recent cosmological data, as well as constraints on the relationship between the clustering parameter ${\ensuremath{\sigma}}_{8}$ and the current matter mass-energy density ${\mathrm{\ensuremath{\Omega}}}_{m}$ from cluster number counts and weak lensing tomography, are considered in our numerical calculations. The strongest bound we find is $|{f}_{R0}|l3.7\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}6}$ at 95% C.L. Forthcoming cluster surveys covering $10\text{ …

research product

Reconciling tensor and scalar observables in G-inflation

The simple $m^2\phi^2$ potential as an inflationary model is coming under increasing tension with limits on the tensor-to-scalar ratio $r$ and measurements of the scalar spectral index $n_s$. Cubic Galileon interactions in the context of the Horndeski action can potentially reconcile the observables. However, we show that this cannot be achieved with only a constant Galileon mass scale because the interactions turn off too slowly, leading also to gradient instabilities after inflation ends. Allowing for a more rapid transition can reconcile the observables but moderately breaks the slow-roll approximation leading to a relatively large and negative running of the tilt $\alpha_s$ that can be …

research product

The present and future of the most favoured inflationary models after $Planck$ 2015

The value of the tensor-to-scalar ratio $r$ in the region allowed by the latest $Planck$ 2015 measurements can be associated to a large variety of inflationary models. We discuss here the potential of future Cosmic Microwave Background cosmological observations in disentangling among the possible theoretical scenarios allowed by our analyses of current $Planck$ temperature and polarization data. Rather than focusing only on $r$, we focus as well on the running of the primordial power spectrum, $\alpha_s$ and the running of thereof, $\beta_s$. Our Fisher matrix method benefits from a detailed and realistic appraisal of the expected foregrounds. Future cosmological probes, as the COrE mission…

research product

Primordial power spectrum features in phenomenological descriptions of inflation

We extend an alternative, phenomenological approach to inflation by means of an equation of state and a sound speed, both of them functions of the number of $e$-folds and four phenomenological parameters. This approach captures a number of possible inflationary models, including those with non-canonical kinetic terms or scale-dependent non-gaussianities. We perform Markov Chain Monte Carlo analyses using the latest cosmological publicly available measurements, which include Cosmic Microwave Background (CMB) data from the Planck satellite. Within this parametrization, we discard scale invariance with a significance of about $10\sigma$, and the running of the spectral index is constrained as …

research product

Inflation with mixed helicities and its observational imprint on CMB

In the framework of effective field theories with prominent helicity-0 and helicity-1 fields coupled to each other via a dimension-3 operator, we study the dynamics of inflation driven by the helicity-0 mode, with a given potential energy, as well as the evolution of cosmological perturbations, influenced by the presence of a mixing term between both helicities. In this scenario, the temporal component of the helicity-1 mode is an auxiliary field and can be integrated out in terms of the time derivative of the helicity-0 mode, so that the background dynamics effectively reduces to that in single-field inflation modulated by a parameter $\beta$ associated to the coupling between helicity-0 a…

research product

Do current data prefer a nonminimally coupled inflaton?

We examine the impact of a non-minimal coupling of the inflaton to the Ricci scalar, $\frac12 \xi R\phi^2$, on the inflationary predictions. Such a non-minimal coupling is expected to be present in the inflaton Lagrangian on fairly general grounds. As a case study, we focus on the simplest inflationary model governed by the potential $V\propto \phi^2$, using the latest combined 2015 analysis of Planck and BICEP2/Keck Array. We find that the presence of a coupling $\xi$ is favoured at a significance of $99\%$ CL, assuming that nature has chosen the potential $V\propto \phi^2$ to generate the primordial perturbations and a number of e-foldings $N=60$. Within the context of the same scenario, …

research product

Running of featureful primordial power spectra

Current measurements of the temperature and polarization anisotropy power spectra of the Cosmic Microwave Background (CMB) seem to indicate that the naive expectation for the slow-roll hierarchy within the most simple inflationary paradigm may not be respected in nature. We show that a primordial power spectra with localized features could in principle give rise to the observed slow-roll anarchy when fitted to a featureless power spectrum. Future CMB missions have the key to disentangle among the two possible paradigms and firmly establish the slow-roll mechanism as the responsible one for the inflationary period in the early universe. From a model comparison perspective, and assuming that …

research product