Chiral synthetic pseudopeptidic derivatives as triplet excited state quenchers
The behavior of 6 pseudopeptidic models, synthesized by connecting different protected amino acids (Trp, Tyr, Phe, and Lys) with various diamino spacers, as quenchers of the triplet excited state of tiaprofenic acid (and its methyl ester), has been investigated. A series of quenching constants have been determined, which depend on the nature of the quencher and on the stereochemistry of the excited drug. A significant degree of stereodifferentiation has been found for the peptidomimetic synthesized with Phe and Tyr linked by a piperazine bridge. The obtained results support the utility of laser flash photolysis (LFP) as a tool to investigate the interactions between photoexcited drugs and s…
Synthesis, spectroscopic studies and biological evaluation of acridine derivatives: The role of aggregation on the photodynamic efficiency.
Two new photoactive compounds (1 and 2) derived from the 9-amidoacridine chromophore have been synthesized and fully characterized. Their abilities to produce singlet oxygen upon irradiation have been compared. The synthesized compounds show very different self-aggregating properties since only 1 present a strong tendency to aggregate in water. Biological assays were conducted with two cell types: hepatoma cells (Hep3B) and human umbilical vein endothelial cells (HUVEC). Photodynamic therapy (PDT) studies carried out with Hep3B cells showed that non-aggregating compound 2 showed photoxicity, ascribed to the production of singlet oxygen, being aggregating compound 1 photochemically inactive.…
Photoluminescence Enhancement of CdSe Quantum Dots: A Case of Organogel–Nanoparticle Symbiosis
Highly fluorescent organogels (QD-organogel), prepared by combining a pseudopeptidic macrocycle and different types of CdSe quantum dots (QDs), have been characterized using a battery of optical and microscopic techniques. The results indicate that the presence of the QDs not only does not disrupt the supramolecular organization of the internal fibrillar network of the organogel to a significant extent, but it also decreases the critical concentration of gelator needed to form stable and thermoreversible organogels. Regarding the photophysical properties of the QDs, different trends were observed depending on the presence of a ZnS inorganic shell around the CdSe core. Thus, while the core-s…
Fluorescent styrylpyrylium probes for the imaging of mitochondria in live cells
Eight styrylpyrylium tetrafluoroborate salts have been synthesized and fully optically characterized by UV-vis absorption and fluorescence steady-state/time-resolved spectroscopies. The new dyes exhibit strong emission bands with yellow–orange colours, depending on the substituents present in the structure. Notably, the Stokes shift recorded for some of them exceeds 100 nm, a very valuable feature for biological imaging. Four of them have been assayed as biological imaging agents by confocal laser scanning microscopy (CLSM) in the human hepatoma cell line Hep3B. It has been found that all the compounds efficiently stain intracellular structures which have been identified as mitochondria thr…
High Optical Performance of Cyan‐Emissive CsPbBr3 Perovskite Quantum Dots Embedded in Molecular Organogels
This is the pre-peer reviewed version of the following article: High Optical Performance of Cyan‐Emissive CsPbBr3 Perovskite Quantum Dots Embedded in Molecular Organogels, which has been published in final form at https://doi.org/10.1002/adom.202001786. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions." Perovskite quantum dots (PQDs) have fascinating optoelectronic properties, such as high photoluminescence quantum yield (PLQY) for a broad range of materials, and the possibility to obtain different bandgaps with the same material or halide combinations. Nevertheless, blue‐emissive materials generally present…