6533b7dafe1ef96bd126e1b6
RESEARCH PRODUCT
Synthesis, spectroscopic studies and biological evaluation of acridine derivatives: The role of aggregation on the photodynamic efficiency.
Olga Martinez-arroyoSantiago Díaz-oltraFrancisco GalindoCarles Felip-leónNadezda ApostolovaJuan F. Miravetsubject
Cell typeCell SurvivalUltraviolet Raysmedicine.medical_treatmentClinical BiochemistryPharmaceutical SciencePhotodynamic therapy010402 general chemistry01 natural sciencesBiochemistrysinglet oxygenUmbilical veinchemistry.chemical_compoundStructure-Activity RelationshipCell Line TumorDrug DiscoverymedicineHuman Umbilical Vein Endothelial CellsBioassayHumansMolecular BiologyCell ProliferationPhotosensitizing AgentsDose-Response Relationship DrugMolecular Structure010405 organic chemistryChemistrySinglet oxygenOrganic ChemistryAcridine derivativesChromophore0104 chemical sciences9-Amidoacridinephotodynamic therapyMicroscopy FluorescencePhotochemotherapyCell cultureorganic nanoparticlesBiophysicsMolecular MedicineAcridinesself-aggregationdescription
Two new photoactive compounds (1 and 2) derived from the 9-amidoacridine chromophore have been synthesized and fully characterized. Their abilities to produce singlet oxygen upon irradiation have been compared. The synthesized compounds show very different self-aggregating properties since only 1 present a strong tendency to aggregate in water. Biological assays were conducted with two cell types: hepatoma cells (Hep3B) and human umbilical vein endothelial cells (HUVEC). Photodynamic therapy (PDT) studies carried out with Hep3B cells showed that non-aggregating compound 2 showed photoxicity, ascribed to the production of singlet oxygen, being aggregating compound 1 photochemically inactive. On the other hand suspensions of 1, characterized as nano-sized aggregates, have notable antiproliferative activity towards this cell line in the dark.
year | journal | country | edition | language |
---|---|---|---|---|
2018-03-01 | Bioorganicmedicinal chemistry letters |