0000000000307376

AUTHOR

Laurenz Rettig

Suppression of the vacuum space-charge effect in fs-photoemission by a retarding electrostatic front lens

Review of scientific instruments 92(5), 053703 (2021). doi:10.1063/5.0046567

research product

Observation of an excitonic Mott transition through ultrafast core-cum-conduction photoemission spectroscopy

Time-resolved soft-X-ray photoemission spectroscopy is used to simultaneously measure the ultrafast dynamics of core-level spectral functions and excited states upon excitation of excitons in WSe$_2$. We present a many-body approximation for the Green's function, which excellently describes the transient core-hole spectral function. The relative dynamics of excited-state signal and core levels reveals a delayed core-hole renormalization due to screening by excited quasi-free carriers, revealing an excitonic Mott transition. These findings establish time-resolved core-level photoelectron spectroscopy as a sensitive probe of subtle electronic many-body interactions and an ultrafast electronic…

research product

Optical control of vibrational coherence triggered by an ultrafast phase transition

Femtosecond time-resolved x-ray diffraction is employed to study the dynamics of the periodic lattice distortion (PLD) associated with the charge-density-wave (CDW) in K0.3MoO3. Using a multi-pulse scheme we show the ability to extend the lifetime of coherent oscillations of the PLD about the undistorted structure through re-excitation of the electronic states. This suggests that it is possible to enter a regime where the symmetry of the potential energy landscape corresponds to the high symmetry phase but the scattering pathways that lead to the damping of coherent dynamics are still controllable by altering the electronic state population. The demonstrated control over the coherence time …

research product

Time-resolved core-level photoemission data of tungsten diselenide

Pump-probe core-level photoemission spectroscopy data of tungsten diselenide (WSe2) measured using an electron momentum microscope at the FLASH Free-electron laser.

research product