0000000000307949
AUTHOR
Nicola Inzerillo
Learning From Errors: Detecting Cross-Technology Interference in WiFi Networks
In this paper, we show that inter-technology interference can be recognized using commodity WiFi devices by monitoring the statistics of receiver errors. Indeed, while for WiFi standard frames the error probability varies during the frame reception in different frame fields (PHY, MAC headers, and payloads) protected with heterogeneous coding, errors may appear randomly at any point during the time the demodulator is trying to receive an exogenous interfering signal. We thus detect and identify cross-technology interference on off-the-shelf WiFi cards by monitoring the sequence of receiver errors (bad PLCP, bad FCS, invalid headers, etc.) and propose two methods to recognize the source of in…
Data fusion analysis applied to different climate change models: an application to the energy consumptions of a building office
The paper aims to achieve the modelling of climate change effects on heating and cooling in the building sector, through the use of the available Intergovernmental Panel on Climate Change forecasted data. Data from several different climate models will be fused with regards to mean air temperature, wind speed and horizontal solar radiation. Several climatic models data were analyzed ranging from January 2006 to December 2100. Rather than considering each model in isolation, we propose a data fusion approach for providing a robust combined model for morphing an existing weather data file. The final aim is simulating future energy use for heating and cooling of a reference building as a conse…
Error-Based Interference Detection in WiFi Networks
In this paper we show that inter-technology interference can be recognized by commodity WiFi devices by monitoring the statistics of receiver errors. Indeed, while for WiFi standard frames the error probability varies during the frame reception in different frame fields (PHY, MAC headers, payloads) protected with heterogeneous coding, errors may appear randomly at any point during the time the demodulator is trying to receive an exogenous interfering signal. We thus detect and identify cross-technology interference on off-the-shelf WiFi cards by monitoring the sequence of receiver errors (bad PLCP, bad PCS, invalid headers, etc.) and develop an Artificial Neural Network (ANN) to recognize t…