0000000000308302

AUTHOR

Massimiliano Guasoni

showing 21 related works from this author

A universal all-fiber omnipolarizer

2013

The all-optical control of light polarization is nowadays a fundamental issue which finds important applications in optical networks. In this field, the research has moved on the development of nonlinear methods of re-polarization of a partially coherent and initially depolarized light [1]. The main drawback of most of these devices is that they suffer from a large amount of output Relative-Intensity-Noise (RIN). However, a class of polarizers have been recently proposed which is based on the nonlinear interaction between two optical beams counter-propagating in a fiber [2]: in these devices the arbitrary state of polarization (SOP) of one of the two beams (signal) is attracted towards a sp…

PhysicsOptical fiberMulti-mode optical fiberbusiness.industryOptical engineeringSingle-mode optical fiberKeyingPolarization-maintaining optical fiberPolarizerPolarization (waves)Graded-index fiberlaw.inventionsymbols.namesakeOpticsSignal beamBrillouin scatteringlawsymbolsFiber optic splitterOptoelectronicsbusinessPlastic optical fiberRaman scatteringPhotonic-crystal fiber
researchProduct

Random bit generation through polarization chaos in nonlinear optical fibers

2017

Nowadays, cryptographic applications are becoming of paramount importance in order to guarantee ultimately secure communications. Performances of classical and quantum key distribution and encryption algorithms are strongly dependent on the used Random Number Generator (RNG). A good RNG must produce unpredictable, unreproducible and unbiased sequences of numbers. For this reason, many true random number generators relying on chaotic physical phenomena, such as chaotic oscillations of high-bandwidth lasers [1, 2] or polarization chaos from a VCSEL diode [3], have been developed. In this work, we propose a RNG implementation based on a different physical mechanism than the ones previously use…

Optical fiberbusiness.industryComputer scienceRandom number generationChaotic02 engineering and technologyQuantum key distributionTopologyEncryptionlaw.inventionNonlinear system020210 optoelectronics & photonicsOpticslawAttractor0202 electrical engineering electronic engineering information engineeringbusinessBeam splitter2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)
researchProduct

Generalized modulational instability in multimode fibers: Wideband multimode parametric amplification

2015

In this paper intermodal modulational instability (IM-MI) is analyzed in a multimode fiber where several spatial and polarization modes propagate. The coupled nonlinear Schr\"odinger equations describing the modal evolution in the fiber are linearized and reduced to an eigenvalue problem. As a result, the amplification of each mode can be described by means of the eigenvalues and eigenvectors of a matrix that stores the information about the dispersion properties of the modes and the modal power distribution of the pump. Some useful analytical formulas are also provided that estimate the modal amplification as function of the system parameters. Finally, the impact of third-order dispersion …

Optical fiberFOS: Physical sciencesPattern Formation and Solitons (nlin.PS)02 engineering and technology01 natural scienceslaw.invention010309 optics020210 optoelectronics & photonicsOpticslaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringModal dispersionEigenvalues and eigenvectorsParametric statisticsPhysicsMulti-mode optical fiberbusiness.industryMathematical analysisNonlinear Sciences - Pattern Formation and SolitonsAtomic and Molecular Physics and OpticsNonlinear systemModulational instabilityModalbusinessPhysics - OpticsOptics (physics.optics)Physical Review A
researchProduct

Optical flip-flop memory and data packet switching operation based on polarization bistability in a telecommunication optical fiber

2013

We report the experimental observation of bistability and hysteresis phenomena of the polarization signal in a telecommunication optical fiber. This process occurs in a counterpropagating configuration in which the optical beam nonlinearly interacts with its own Bragg-reflected replica at the fiber output. The proof of principle of optical flip–flop memory and 10  Gbit/s routing operation is also reported based on this polarization bistability. Finally, we also provide a general physical understanding of this behavior on the basis of a geometrical analysis of an effective model of the dynamics. Good quantitative agreement between theory and experiment is obtained.

Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Multi-mode optical fiber[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Bistabilitybusiness.industryOptical cross-connectSingle-mode optical fiberPhysics::OpticsStatistical and Nonlinear PhysicsPolarization-maintaining optical fiberOptical performance monitoring01 natural sciencesOptical switchAtomic and Molecular Physics and Optics010309 opticsOptics0103 physical sciencesFiber optic splitterOptoelectronics010306 general physicsTelecommunicationsbusinessComputingMilieux_MISCELLANEOUS
researchProduct

Optical flip-flop memory and routing operation based on polarization bistability in optical fiber

2014

A polarization bistability and hysteresis cycle phenomenon is demonstrated in optical fibers thanks to a counter-propagating four-wave mixing interaction. Based on this process, we successfully report the proof-of-principle of an optical flip-flop memory and a 10-Gbit/s routing operation.

Materials scienceBistabilitybusiness.industryOptical cross-connectSingle-mode optical fiberPhysics::OpticsPolarization-maintaining optical fiberOptical performance monitoringOptical switchOpticsOptical transistorFiber optic splitterOptoelectronicsbusinessOptical add-drop multiplexerPhotonic-crystal fiber2014 The European Conference on Optical Communication (ECOC)
researchProduct

40 GHz pulse source based on cross-phase modulation-induced focusing in normally dispersive optical fibers.

2016

We theoretically and experimentally investigate the design of a high-repetition rate source delivering well-separated optical pulses due to the nonlinear compression of a dual-frequency beat signal within a cavity-less normally dispersive fiber-based setup. This system is well described by a set of two coupled nonlinear Schrodinger equations for which the traditional normally dispersive defocusing regime is turned in a focusing temporal lens through a degenerated cross-phase modulation process (XPM). More precisely, the temporal compression of the initial beating is performed by the combined effects of normal dispersion and XPM-induced nonlinear phase shift provided by an intense beat signa…

PhysicsOptical fiberbusiness.industryCross-phase modulation02 engineering and technologySignalAtomic and Molecular Physics and Opticslaw.invention020210 optoelectronics & photonicsOpticsModulationPulse compressionlawDispersion (optics)0202 electrical engineering electronic engineering information engineeringPulse wavebusinessPhase modulationOptics letters
researchProduct

All-optical regeneration of polarization of a 40 Gbit/s return-to-zero telecommunication signal

2013

International audience; We report all-optical regeneration of the state of polarization of a 40 Gbit/s return-to-zero telecommunication signal. The device discussed here consists of a 6.2-km-long nonzero dispersion-shifted fiber, with low polarization mode dispersion, pumped from the output end by a backward propagating wave coming from either an external continuous source or a reflection of the signal. An initially scrambled signal acquires a degree of polarization close to 100% toward the polarization generator output. All-optical regeneration is confirmed by means of polarization and bit-error-rate measurements as well as real-time observation of the eye diagrams. We show that the physic…

Polarization-maintaining optical fiber02 engineering and technologyPolarization-division multiplexingfibers01 natural sciencesFiber optics and optical communications; nonlinear optical devices; nonlinear optics fibers010309 optics020210 optoelectronics & photonicsOpticsFiber optics and optical communications0103 physical sciences0202 electrical engineering electronic engineering information engineeringCircular polarizationPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Polarization rotator[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Linear polarizationbusiness.industrynonlinear optical devicesnonlinear opticsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsCross-polarized wave generationPolarization mode dispersionDegree of polarizationTelecommunicationsbusinessPhotonics Research
researchProduct

Intensity noise-driven nonlinear fiber polarization scrambler

2014

We propose and analyze a novel all-optical fiber polarization scrambler based on the transfer (via the Kerr effect) of the intensity fluctuations of an incoherent pump beam into polarization fluctuations of a frequency-shifted signal beam, copropagating in a randomly birefringent telecom fiber. Optimal signal polarization scrambling results whenever the input signal and pump beams have nearly orthogonal states of polarization. The nonlinear polarization scrambler may operate on either cw or high-bit-rate pulsed signals.

Physicsoptical Kerr effectBirefringenceKerr effectPolarization rotatoroptical fibersbusiness.industryDigital image storage; optical fibers; optical Kerr effectPhysics::OpticsPolarization-maintaining optical fiber02 engineering and technologyPolarization (waves)01 natural sciencesAtomic and Molecular Physics and Optics010309 optics020210 optoelectronics & photonicsOpticsSignal beamPolarization scrambling0103 physical sciences0202 electrical engineering electronic engineering information engineeringRadial polarizationOptoelectronicsDigital image storagebusiness
researchProduct

Self-polarization effect in the middle point of an optical fiber

2019

In this paper, we report both numerically and experimentally an unexpected phenomenon of self-polarization occurring in the middle point of an isotropic optical fiber when two uncorrelated partially polarized waves are simultaneously injected at the ends of the fiber. More precisely, we demonstrate that two counterpropagating waves of equal intensity exhibit a spontaneous organization of their polarization states around two pools of attraction just in the middle point of propagation, and then both recover a partially polarized state at their respective fiber outputs. The self-polarization effect then remains hidden within the optical fiber in the sense that no apparent sign of this process …

Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Optical fiber[PHYS.PHYS]Physics [physics]/Physics [physics]business.industryIsotropyPhysics::OpticsPolarization (waves)01 natural sciencesUncorrelated010305 fluids & plasmaslaw.inventionPolarization phenomenonOpticslaw0103 physical sciencesDegree of polarization010306 general physicsbusinessComputingMilieux_MISCELLANEOUSPhysical Review A
researchProduct

Line of polarization attraction in highly birefringent optical fibers

2014

We investigate the phenomenon of polarization attraction in a highly birefringent fiber. This polarization process originates from the nonlinear interaction of two counter-propagating beams. We show that all polarization states of the forward (signal) beam are attracted toward a specific line of polarization states on the surface of the Poincare sphere, whose characteristics are determined by the polarization state of the injected backward (pump) beam. This phenomenon of polarization attraction takes place without any loss of energy for the signal beam. The stability of different stationary solutions is also discussed through intensive numerical simulations. On the basis of mathematical tec…

PhysicsClassical mechanicsPolarization rotatorBirefringenceSignal beamLinear polarizationRadial polarizationNonlinear opticsStatistical and Nonlinear PhysicsPolarization (waves)Atomic and Molecular Physics and OpticsCircular polarizationJournal of the Optical Society of America B
researchProduct

Self-Organization of Polarization State in Optical Fibers

2017

Self-organizationZero-dispersion wavelengthOptical fiberMaterials scienceOpticsPolarization rotatorlawbusiness.industryPolarization (waves)businesslaw.invention
researchProduct

All-Optical Polarization Control for Telecom Applications

2015

We describe a phenomenon of self-organization of the light state-of-polarization in optical fibers based on a nonlinear cross-polarization interaction between an incident signal and its backward replica. Several proof-of-principles for telecom applications are reported.

PhysicsMulti-mode optical fiberbusiness.industryOptical cross-connectSingle-mode optical fiberPhysics::OpticsOptical polarizationOptical performance monitoringFiber-optic communicationOpticsOptical transistorOptoelectronicsbusinessTelecommunicationsPhotonic-crystal fiberOptical Fiber Communication Conference
researchProduct

Fast polarization scrambler based on chaotic dynamics in optical fibers

2014

Mode scramblerPhysicsOptical fiberbusiness.industrySingle-mode optical fiberPolarization-maintaining optical fiberlaw.inventionScramblerFiber-optic communicationOpticsDouble-clad fiberlawbusinessPhotonic-crystal fiber2014 The European Conference on Optical Communication (ECOC)
researchProduct

All-fiber based chaotic polarization scrambler

2014

We present a fiber-based polarization scrambler founded on the nonlinear interaction between a signal and its backward replica generated and amplified by a reflective loop. The output polarization dynamic turns out to be chaotic.

Nonlinear systemOpticsMaterials sciencePolarization rotatorComputer simulationbusiness.industryPolarization mode dispersionReplicaChaoticbusinessPolarization (waves)ScramblerAdvanced Photonics
researchProduct

A universal all-fiber Omnipolarizer

2014

We report the experimental observation of self-polarization of light in optical fibers through a counter-propagating four-wave mixing between an incident signal and its backward replica. An efficient self-polarization of a 40-Gbit/s signal is demonstrated.

PhysicsOptical fiberMulti-mode optical fiberbusiness.industrySingle-mode optical fiberPhysics::OpticsPolarization-maintaining optical fiberGraded-index fiberlaw.inventionOpticslawOptoelectronicsDispersion-shifted fiberbusinessPlastic optical fiberPhotonic-crystal fiber
researchProduct

Theory of modal attraction in bimodal birefringent optical fibers

2013

Nonlinear mode coupling among two beams of different wavelength that copropagate in a bimodal highly birefringent optical fiber may lead to the effect of modal attraction. Under such circumstances, the modal distribution of light at a pump wavelength is replicated at the signal wavelength, nearly irrespective of the input mode excitation conditions of the signal.

Optical fiberPhysics::OpticsBirefringent optical fiberI02 engineering and technology01 natural scienceslaw.invention010309 optics020210 optoelectronics & photonicsOpticsZero-dispersion wavelengthlaw0103 physical sciencesnonlinear mode coupling0202 electrical engineering electronic engineering information engineeringBirefringent optical fiberI; input modes; nonlinear mode couplingPhysicsBirefringencebusiness.industryCross-phase modulationNonlinear opticsPolarization (waves)Atomic and Molecular Physics and OpticsWavelengthMode couplingbusinessinput modesOptics Letters
researchProduct

Giant collective incoherent shock waves in strong turbulence

2016

Contrary to conventional coherent shocks, we show theoretically and experimentally that nonlocal turbulent flows lead to the emergence of large-scale incoherent shock waves, which constitute a collective phenomenon of the incoherent field as a whole.

Shock wavePhysicsClassical mechanicsField (physics)Computer simulationTurbulenceAstrophysics::High Energy Astrophysical PhenomenaIncoherent scatterLight beamNO
researchProduct

Temporal spying and concealing process in fibre-optic data transmission systems through polarization bypass

2014

Recent research has been focused on the ability to manipulate a light beam in such a way to hide, namely to cloak, an event over a finite time or localization in space. The main idea is to create a hole or a gap in the spatial or time domain so as to allow for an object or data to be kept hidden for a while and then to be restored. By enlarging the field of applications of this concept to telecommunications, researchers have recently reported the possibility to hide transmitted data in an optical fibre. Here we report the first experimental demonstration of perpetual temporal spying and blinding process of optical data in fibre-optic transmission line based on polarization bypass. We succes…

optical fiberOptical fiberComputer scienceOptical communicationGeneral Physics and AstronomyCloakingtemporal cloakingpolarization control02 engineering and technologyoptical communicationsBioinformatics01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular Biologylaw.invention010309 optics020210 optoelectronics & photonicsOpticslaw0103 physical sciences0202 electrical engineering electronic engineering information engineering[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Multidisciplinarybusiness.industryGeneral ChemistryTransmission systemPolarization (waves)Data transmission systemsContinuous wavebusinessNature Communications
researchProduct

Sampling and amplification technique based on XPM-induced focusing in normally dispersive optical fibers

2016

International audience; We theoretically and experimentally investigate an all-optical amplification and sampling technique based on a XPM process between an arbitrary signal and an intense orthogonally polarized high repetition rate sinusoidal pump wave within a normally dispersive optical fiber.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]genetic structuresPhysics::Opticseye diseases
researchProduct

40-GHz Pulse Source Based on XPM-Induced Focusing in Normally Dispersive Optical Fiber

2016

International audience

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]ComputingMilieux_MISCELLANEOUS
researchProduct

DH_Results_XORedData_100samplesDelay.pdf

2018

Results of the dieharder tests

researchProduct