0000000000309031

AUTHOR

Yevhen Polyhach

Rigid Core and Flexible Terminus

The structure of the major light-harvesting chlorophyll a/b complex (LHCII) was analyzed by pulsed EPR measurements and compared with the crystal structure. Site-specific spin labeling of the recombinant protein allowed the measurement of distance distributions over several intra- and intermolecular distances in monomeric and trimeric LHCII, yielding information on the protein structure and its local flexibility. A spin label rotamer library based on a molecular dynamics simulation was used to take the local mobility of spin labels into account. The core of LHCII in solution adopts a structure very similar or identical to the one seen in crystallized LHCII trimers with little motional freed…

research product

Site-Specific Information on Membrane Protein Folding by Electron Spin Echo Envelope Modulation Spectroscopy

Compared to folding of soluble proteins, folding of membrane proteins is complicated by the fact that it requires an amphiphilic environment. Few existing techniques can provide structurally resolved information on folding kinetics. For the major plant light harvesting complex LHCII, it is demonstrated that changes in water accessibility of a particular amino acid residue can be followed during folding by measuring the hyperfine interaction of spin labels with deuterium nuclei of heavy water. The incorporation of residue 196 into the hydrophobic core of a detergent micelle was investigated. The technique provides a time constant that is similar to the one found with fluorescence spectroscop…

research product

Refolding of the integral membrane protein light-harvesting complex II monitored by pulse EPR

The major light-harvesting chlorophyll a / b complex (LHCII) of the photosynthetic apparatus in plants self-organizes in vitro. The recombinant apoprotein, denatured in dodecyl sulfate, spontaneously folds when it is mixed with its pigments, chlorophylls, and carotenoids in detergent solution, and assembles into structurally authentic LHCII in the course of several minutes. Pulse EPR techniques, specifically double-electron-electron resonance (DEER), have been used to analyze protein folding during this process. Pairs of nitroxide labels were introduced site-specifically into recombinant LHCII and shown not to affect the stability and function of the pigment-protein complex. Interspin dist…

research product

Modeling of the N-terminal Section and the Lumenal Loop of Trimeric Light Harvesting Complex II (LHCII) by Using EPR

The major light harvesting complex II (LHCII) of green plants plays a key role in the absorption of sunlight, the regulation of photosynthesis, and in preventing photodamage by excess light. The latter two functions are thought to involve the lumenal loop and the N-terminal domain. Their structure and mobility in an aqueous environment are only partially known. Electron paramagnetic resonance (EPR) has been used to measure the structure of these hydrophilic protein domains in detergent-solubilized LHCII. A new technique is introduced to prepare LHCII trimers in which only one monomer is spin-labeled. These heterogeneous trimers allow to measure intra-molecular distances within one LHCII mon…

research product