0000000000309060

AUTHOR

Stephan Fritzsche

showing 20 related works from this author

Nuclear mean-square charge radii of63,64,66,68−82Ga nuclei: No anomalous behavior atN=32

2012

Collinear laser spectroscopy was performed on the ${}^{63,64,66,68\ensuremath{-}82}$Ga isotopes with neutron numbers from $N=32$ to $N=51$. These measurements were carried out at the ISOLDE radioactive ion beam facility at CERN. Here we present the nuclear mean-square charge radii extracted from the isotope shifts and, for the lighter isotopes, new spin and moment values. New ground-state nuclear spin and moments were extracted from the hyperfine spectra of ${}^{63,70}$Ga, measured on an atomic transition in the neutral atom. The ground-state spin of ${}^{63}$Ga is determined to be $I=3/2$. Analysis of the trend in the change in mean-square charge radii of the gallium isotopes demonstrates …

PhysicsNuclear and High Energy PhysicsIsotope010308 nuclear & particles physicschemistry.chemical_elementCharge (physics)7. Clean energy01 natural sciencesSpectral linechemistry0103 physical sciencesNeutronPhysics::Atomic PhysicsAtomic physicsGalliumNuclear Experiment010306 general physicsSpin (physics)SpectroscopyHyperfine structurePhysical Review C
researchProduct

Probing Sizes and Shapes of Nobelium Isotopes by Laser Spectroscopy

2018

Until recently, ground-state nuclear moments of the heaviest nuclei could only be inferred from nuclear spectroscopy, where model assumptions are required. Laser spectroscopy in combination with modern atomic structure calculations is now able to probe these moments directly, in a comprehensive and nuclear-model-independent way. Here we report on unique access to the differential mean-square charge radii of ^{252,253,254}No, and therefore to changes in nuclear size and shape. State-of-the-art nuclear density functional calculations describe well the changes in nuclear charge radii in the region of the heavy actinides, indicating an appreciable central depression in the deformed proton densi…

IN-BEAMNuclear TheoryGeneral Physics and Astronomychemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]DROPLET-MODEL01 natural sciencesEffective nuclear chargeNO-2540103 physical sciencesNeutronSUPERHEAVY ELEMENTS010306 general physicsSpectroscopyMASSESNuclear ExperimentHyperfine structurePhysicsMagnetic momentNUCLEI010308 nuclear & particles physicsPRODUCTSchemistryQuadrupoleUPDATENobeliumAtomic physicsSHIPNuclear density
researchProduct

First Observation of Atomic Levels for the Element Fermium (Z=100)

2003

The atomic level structure of the element fermium was investigated for the first time using a sample of $2.7\ifmmode\times\else\texttimes\fi{}{10}^{10}$ atoms of the isotope $^{255}\mathrm{F}\mathrm{m}$ with a half-life of 20.1 h. The atoms were evaporated from a filament and stored in the argon buffer gas of an optical cell. Atomic levels were sought by the method of resonance ionization spectroscopy using an excimer-dye-laser combination. Two atomic levels were found at wave numbers $(25\text{ }099.8\ifmmode\pm\else\textpm\fi{}0.2)$ and $(25\text{ }111.8\ifmmode\pm\else\textpm\fi{}0.2)\text{ }\text{ }{\mathrm{c}\mathrm{m}}^{\ensuremath{-}1}$. Partial transition rates to the $5{f}^{12}7{s}…

PhysicschemistryFermiumResonance ionizationSaturation (graph theory)General Physics and Astronomychemistry.chemical_elementAtomic physicsGround stateSpectroscopyPhysical Review Letters
researchProduct

Early onset of deformation in the neutron-deficient polonium isotopes

2012

In-source laser spectroscopy has been performed at CERN-ISOLDE with the RILIS laser ion source on Po-191-204,Po-206,Po-208-211,Po-216,Po-218. New information on the beta decay of Po-199 were extracted in the process, challenging previous results. Large-scale atomic calculations were performed to extract the changes in the mean-square charge radius delta from the isotope shifts. The delta for the even-A isotopes reveal a large deviation from the spherical droplet model for N < 116.

HistoryIsotopeChemistrychemistry.chemical_elementLaserIon sourceComputer Science ApplicationsEducationlaw.inventionlawCharge radiusNeutronPhysics::Atomic PhysicsDeformation (engineering)Atomic physicsNuclear ExperimentSpectroscopyPoloniumJournal of Physics: Conference Series
researchProduct

First Ionization Potentials of Fm, Md, No, and Lr

2018

We report the first ionization potentials (IP1) of the heavy actinides, fermium (Fm, atomic number Z = 100), mendelevium (Md, Z = 101), nobelium (No, Z = 102), and lawrencium (Lr, Z = 103), determined using a method based on a surface ionization process coupled to an online mass separation technique in an atom-at-a-time regime. The measured IP1 values agree well with those predicted by state-of-the-art relativistic calculations performed alongside the present measurements. Similar to the well-established behavior for the lanthanides, the IP1 values of the heavy actinides up to No increase with filling up the 5f orbital, while that of Lr is the lowest among the actinides. These results clear…

ENERGIESThermal ionizationchemistry.chemical_element01 natural sciencesBiochemistryCatalysisColloid and Surface ChemistrySURFACE-IONIZATIONPhysics in GeneralCHEMISTRYIonization0103 physical sciencesELEMENTS010306 general physicsSPECTROSCOPY010304 chemical physicsChemistryFermiumGeneral ChemistryActinideATOMMendeleviumNobeliumAtomic numberAtomic physicsLawrenciumJournal of the American Chemical Society
researchProduct

Measurement of the first ionization potential of astatine by laser ionization spectroscopy

2013

The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to sup…

Other Fields of PhysicsGeneral Physics and Astronomychemistry.chemical_element7. Clean energy01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyArticlePhysics in GeneralAb initio quantum chemistry methodsCHEMISTRYIonization0103 physical sciencesAtomPhysics::Atomic and Molecular ClustersFACILITYPhysics::Atomic Physics010306 general physicsAstatineSpectroscopyPhysicsMultidisciplinary010308 nuclear & particles physicsGeneral ChemistryION-SOURCEIon source3. Good healthchemistry13. Climate actionIonization energyAtomic physicsValence electronNature Communications
researchProduct

First Determination of the Ionization Potential of Actinium and First Observation of Optical Transitions in Ferminm

2002

For the determination of the first ionization potential of actinium, 227Ac was electrodeposited on a Ta backing and covered with ~1 μm Zr. From this filament, Ac atoms were evaporated at ≥ 1250 °C. By resonant excitation with UV light of 388.67 nm and subsequent excitation with light of ca. 568 nm, Ac was ionized in an external electrical field. By determining the ionization thresholds as a function of the electrical field strength and by extrapolation to zero field strength, the first ionization potential of 43398(3) cm−1 = 5.3807(3) eV was measured.About 1 ng of 255Fm, half life 20.1 h, was prepared at ORNL by milking from 255Es produced in the High Flux Isotope Reactor and shipped to Mai…

Nuclear and High Energy PhysicsChemistryBuffer gasAnalytical chemistryThermal ionizationchemistry.chemical_elementIonActiniumNuclear Energy and EngineeringExcited stateIonizationAtomic physicsIonization energyExcitationJournal of Nuclear Science and Technology
researchProduct

Resonance ionization spectroscopy of fermium (Z=100)

2003

Laser spectroscopy has been applied for the first time to measure resonant transition frequencies of fermium (Zs 100). A number of 2.7=10 atoms was electrodeposited on a Ta filament and covered with a 1 mm Ti layer. Fm 10

ChemistryFermiumBuffer gasAnalytical chemistrychemistry.chemical_elementPhotoionizationActinideAtomic and Molecular Physics and OpticsAnalytical ChemistryProtein filamentIonizationAtomic physicsSpectroscopyAbsorption (electromagnetic radiation)InstrumentationSpectroscopySpectrochimica Acta Part B: Atomic Spectroscopy
researchProduct

Proton-neutron pairing correlations in the self-conjugate nucleus 42Sc

2021

Collinear laser spectroscopy of the N=Z=21 self-conjugate nucleus 42Sc has been performed at the JYFL IGISOL IV facility in order to determine the change in nuclear mean-square charge radius between the Iπ=0+ ground state and the Iπ=7+ isomer via the measurement of the 42g,42mSc isomer shift. New multi-configurational Dirac-Fock calculations for the atomic mass shift and field shift factors have enabled a recalibration of the charge radii of the 42−46Sc isotopes which were measured previously. While consistent with the treatment of proton-neutron, proton-proton and neutron-neutron pairing on an equal footing, the reduction in size for the isomer is observed to be of a significantly larger m…

CHARGE RADIINuclear and High Energy PhysicsProtonCollinear laser spectroscopyQC1-999spektroskopiaNuclear TheoryFOS: Physical sciencesAstronomy & Astrophysicsnucl-ex01 natural sciencesPhysics Particles & FieldsCharge radius0103 physical sciencesPhysics::Atomic and Molecular Clustersddc:530NeutronNuclear Physics - ExperimentNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentPhysicsisotoopitScience & TechnologyIsotopeMagnetic moment010308 nuclear & particles physicsPhysicsProton-neutron pairingTABLEHyperfine structure and isotope shiftAtomic mass3. Good healthCharge radiusPhysics NuclearPairingPhysical SciencesSHELL-MODELAtomic physicsydinfysiikkaGround stateskandiumPhysics Letters B
researchProduct

Hyperfine structure study of Tc97,98,99 in a new laser ion source for high-resolution laser spectroscopy

2020

Using a novel concept for efficient laser spectroscopy, we investigated the hyperfine splittings of three different atomic transitions in the long-lived isotopes $^{97\ensuremath{-}99}\mathrm{Tc}$. Despite the refractory character of the element technetium, sample sizes as low as ${10}^{11}$ atoms were sufficient to achieve excellent signal-to-noise ratios at a spectroscopic linewidth of less than 100 MHz. The obtained spectra were analyzed in detail, which results in a very good consistency for the extracted hyperfine parameters from the different transitions. The presented measurements provide the first hyperfine structure data for the isotopes $^{97,98}\mathrm{Tc}$ from which, in combina…

PhysicsLaser linewidthIsotopeQuadrupoleCharge (physics)Physics::Atomic PhysicsAtomic physicsSpectroscopyHyperfine structureMagnetic dipoleSpectral linePhysical Review C
researchProduct

Ground state properties of manganese isotopes across the N=28 shell closure

2010

Abstract The first optical study of the N = 28 shell closure in manganese is reported. Mean-square charge radii and quadrupole moments, obtained for ground and isomeric states in 50–56 Mn, are extracted using new calculations of atomic factors. The charge radii show a well defined shell closure at the magic number. The behaviour of the charge radii is strikingly different to that of the neutron separation energies where no shell effect can be observed. The nuclear parameters can be successfully described by large scale shell model calculations using the GXPF1A interaction.

PhysicsNuclear and High Energy PhysicsIsotopeNuclear TheoryShell (structure)chemistry.chemical_elementCharge (physics)ManganeseElectromagnetic momentsIsotope shiftchemistryQuadrupolePhysics::Atomic and Molecular ClustersNeutronAtomic physicsGround stateNuclear charge radiusMagic number (physics)Physics Letters B
researchProduct

Isotope shifts from collinear laser spectroscopy of doubly charged yttrium isotopes

2018

Collinear laser spectroscopy has been performed on doubly charged ions of radioactive yttrium in order to study the isotope shifts of the 294.6-nm $5s\phantom{\rule{0.16em}{0ex}}^{2}S_{1/2}\ensuremath{\rightarrow}5p\phantom{\rule{0.16em}{0ex}}^{2}P_{1/2}$ line. The potential of such an alkali-metal-like transition to improve the reliability of atomic-field-shift and mass-shift factor calculations, and hence the extraction of nuclear mean-square radii, is discussed. Production of yttrium ion beams for such studies is available at the IGISOL IV Accelerator Laboratory, Jyv\"askyl\"a, Finland. This newly recommissioned facility is described here in relation to the on-line study of accelerator-p…

PhysicsIsotopeta114010308 nuclear & particles physicsinterdisciplinary physicschemistry.chemical_elementOrder (ring theory)Yttrium01 natural sciences7. Clean energyIonYttrium Isotopeschemistrynuclear physics0103 physical sciencesProduction (computer science)fine and hyperfine structureAtomic physics010306 general physicsSpectroscopyydinfysiikkaLine (formation)
researchProduct

Towards high-resolution laser ionization spectroscopy of the heaviest elements in supersonic gas jet expansion

2017

Resonant laser ionization and spectroscopy are widely used techniques at radioactive ion beam facilities to produce pure beams of exotic nuclei and measure the shape, size, spin and electromagnetic multipole moments of these nuclei. However, in such measurements it is difficult to combine a high efficiency with a high spectral resolution. Here we demonstrate the on-line application of atomic laser ionization spectroscopy in a supersonic gas jet, a technique suited for high-precision studies of the ground- and isomeric-state properties of nuclei located at the extremes of stability. The technique is characterized in a measurement on actinium isotopes around the N=126 neutron shell closure. A…

Ion beamScienceGeneral Physics and Astronomy[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyGeneral Biochemistry Genetics and Molecular BiologyArticlelaw.inventionlawIonization0103 physical sciencesspectral resolutionNeutronSpectral resolution010306 general physicsSpectroscopyNuclear ExperimentPhysicsJet (fluid)Multidisciplinaryta114010308 nuclear & particles physicsQGeneral ChemistryLaserlaser ionization spectroscopyAtom laserexotic nucleisupersonic gas jetddc:500Atomic physics
researchProduct

In-gas laser ionization and spectroscopy of actinium isotopes near the N=126 closed shell

2017

The in-gas laser ionization and spectroscopy (IGLIS) techniquewas applied on the $^{212–215}$Ac isotopes, produced at the Leuven Isotope Separator On-Line (LISOL) facility by using the in-gas-cell and the in-gas-jet methods. The first application under on-line conditions of the in-gas-jet laser spectroscopy method showed a superior performance in terms of selectivity, spectral resolution, and efficiency in comparison with the in-gas-cell method. Following the analysis of both experiments, the magnetic-dipole moments for the $^{212–215}$Ac isotopes, electric-quadrupole moments and nuclear spins for the $^{214,215}$Ac isotopes are presented and discussed. A good agreement is obtained with lar…

spectroscopyGas laserspektroskopiachemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energylaw.inventionlawnuclear physicsIonization0103 physical sciencesNuclear Physics - ExperimentPhysics::Atomic PhysicsSpectral resolution010306 general physicsSpectroscopyNuclear ExperimentOpen shellAstrophysics::Galaxy AstrophysicsPhysicsIsotopeta114010308 nuclear & particles physicsLaserActiniumchemistryAtomic physicsydinfysiikkaPhysical Review C
researchProduct

Changes in nuclear structure along the Mn isotopic chain studied via charge radii

2016

The hyperfine spectra of $^{51,53-64}$Mn were measured in two experimental runs using collinear laser spectroscopy at ISOLDE, CERN. Laser spectroscopy was performed on the atomic $3d^5\ 4s^2\ ^{6}\text{S}_{5/2}\rightarrow 3d^5\ 4s4p\ ^{6}\text{P}_{3/2}$ and ionic $3d^5\ 4s\ ^{5}\text{S}_2 \rightarrow 3d^5\ 4p\ ^{5}\text{P}_3$ transitions, yielding two sets of isotope shifts. The mass and field shift factors for both transitions have been calculated in the multiconfiguration Dirac-Fock framework and were combined with a King plot analysis in order to obtain a consistent set of mean-square charge radii which, together with earlier work on neutron-deficient Mn, allow the study of nuclear struc…

Nuclear and High Energy PhysicsField (physics)N=28FOS: Physical sciences114 Physical sciences01 natural sciencesSpectral line0103 physical sciencesPROGRAMNuclear Physics - ExperimentNeutronNuclear Experiment (nucl-ex)LASER SPECTROSCOPY010306 general physicsSpectroscopyCALCIUM ISOTOPESNuclear ExperimentHyperfine structureisotopesPhysicsisotoopitta114010308 nuclear & particles physicsNuclear structureSHIFTShyperfine spectraOrder (ring theory)Charge (physics)mangaaniQUADRUPOLE-MOMENTSnuclear structuremanganeseSHELL-MODELlaser spectroscopyNEUTRONPräzisionsexperimente - Abteilung BlaumAtomic physicsPhysical Review C
researchProduct

Discovery of a long-lived low-lying isomeric state in Ga-80

2010

Collinear laser spectroscopy was performed on the $^{80}\mathrm{Ga}$ isotope at ISOLDE, CERN. A low-lying isomeric state with a half-life much greater than $200$ ms was discovered. The nuclear spins and moments of the ground and isomeric states and the isomer shift are discussed. Probable spins and parities are assigned to both long-lived states (${3}^{\ensuremath{-}}$ and ${6}^{\ensuremath{-}}$) deduced from a comparison of the measured moments to shell-model calculations.

PhysicsNuclear and High Energy PhysicsParticle propertiesSpinsIsotope010308 nuclear & particles physicsParity (physics)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesQUADRUPOLE-MOMENTSIsomeric shift0103 physical sciencesPhysics::Atomic and Molecular ClustersNuclear Physics - ExperimentAtomic physics010306 general physicsSpectroscopyNuclear Experiment
researchProduct

Cu charge radii reveal a weak sub-shell effect at N=40

2016

Collinear laser spectroscopy on Cu58-75 isotopes was performed at the CERN-ISOLDE radioactive ion beam facility. In this paper we report on the isotope shifts obtained from these measurements. State-of-the-art atomic physics calculations have been undertaken in order to determine the changes in mean-square charge radii δ(r2)A,A′ from the observed isotope shifts. A local minimum is observed in these radii differences at N=40, providing evidence for a weak N=40 sub-shell effect. However, comparison of δ(r2)A,A′ with a droplet model prediction including static deformation deduced from the spectroscopic quadrupole moments, points to the persistence of correlations at N=40.

PhysicsIon beamIsotope010308 nuclear & particles physicsModel predictionShell (structure)Charge (physics)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesPhysique atomique et nucléaire0103 physical sciencesQuadrupolePhysics::Accelerator PhysicsPhysics::Atomic PhysicsPräzisionsexperimente - Abteilung BlaumAtomic physicsDeformation (engineering)010306 general physicsSpectroscopyNuclear Experiment
researchProduct

Nuclear charge radii and electromagnetic moments of radioactive scandium isotopes and isomers

2011

International audience; Collinear laser spectroscopy experiments with the Sc + transition 3d4s 3 D 2 → 3d4p 3 F 3 at λ = 363.1 nm were performed on the 42−46 Sc isotopic chain using an ion guide isotope separator with a cooler-buncher. Nuclear magnetic dipole and electric quadrupole moments as well as isotope shifts were determined from the hyperfine structure for five ground states and two isomers. Extensive multi-configurational Dirac-Fock calculations were performed in order to evaluate the specific mass-shift, M SMS, and field-shift, F, parameters which allowed evaluation of the charge radii trend of the Sc isotopic sequence. The charge radii obtained show systematics more like the Ti r…

PhysicsNuclear and High Energy Physicscollinear laser spectroscopy010308 nuclear & particles physicschemistry.chemical_element01 natural sciences7. Clean energyEffective nuclear chargeIon21.10.Kychemistrynuclear moments PACS numbers: 21.10.Ft0103 physical sciencesQuadrupolemean-square charge radiusNeutronPhysics::Atomic PhysicsScandium42.62.FiAtomic physics010306 general physicsSpectroscopy32.10.FnMagnetic dipoleHyperfine structureJournal of Physics G: Nuclear and Particle Physics
researchProduct

Charge radii and electromagnetic moments of At195–211

2018

Hyperfine-structure parameters and isotope shifts of At195-211 have been measured for the first time at CERN-ISOLDE, using the in-source resonance-ionization spectroscopy method. The hyperfine structures of isotopes were recorded using a triad of experimental techniques for monitoring the photo-ion current. The Multi-Reflection Time-of-Flight Mass Spectrometer, in connection with a high-resolution electron multiplier, was used as an ion-counting setup for isotopes that either were affected by strong isobaric contamination or possessed a long half-life; the ISOLDE Faraday cups were used for cases with high-intensity beams; and the Windmill decay station was used for short-lived, predominantl…

PhysicsIsotope010308 nuclear & particles physicsElectron multiplierchemistry.chemical_elementCharge (physics)Mass spectrometry7. Clean energy01 natural scienceschemistry13. Climate action0103 physical sciencesPhysics::Atomic PhysicsAtomic physicsNuclear Experiment010306 general physicsAstatineSpectroscopyHyperfine structurePoloniumPhysical Review C
researchProduct

Charge radii of odd-A 191–211Po isotopes

2013

Isotope shifts have been measured for the odd-A polonium isotopes 191–211Po and changes in the nuclear mean square charge radii δr2 have been deduced. The measurements were performed at CERN-ISOLDE using the in-source resonance-ionization spectroscopy technique. The combined analysis of these data and our recent results for even-A polonium isotopes indicates an onset of deformation already at 197,198Po, when going away from stability. This is significantly earlier than was suggested by previous theoretical and experimental studies of the polonium isotopes. Moreover and in contrast to the mercury isotopes, where a strong odd–even staggering of the charge radii of the ground states was observ…

PhysicsMean squareNuclear and High Energy PhysicsIsotope010308 nuclear & particles physicsShape coexistencechemistry.chemical_elementMercury IsotopesCharge (physics)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesIsotopes of nitrogenNuclear physicsIsotope shiftchemistry0103 physical sciencesNeutronPhysics::Atomic PhysicsAtomic physicsNuclear charge radiusNuclear Experiment010306 general physicsSpectroscopyPoloniumPhysics Letters B
researchProduct