0000000000309064
AUTHOR
Hans-peter Seidel
LeSSS: Learned Shared Semantic Spaces for Relating Multi-Modal Representations of 3D Shapes
In this paper, we propose a new method for structuring multi-modal representations of shapes according to semantic relations. We learn a metric that links semantically similar objects represented in different modalities. First, 3D-shapes are associated with textual labels by learning how textual attributes are related to the observed geometry. Correlations between similar labels are captured by simultaneously embedding labels and shape descriptors into a common latent space in which an inner product corresponds to similarity. The mapping is learned robustly by optimizing a rank-based loss function under a sparseness prior for the spectrum of the matrix of all classifiers. Second, we extend …
Approximate 3D Partial Symmetry Detection Using Co-occurrence Analysis
This paper addresses approximate partial symmetry detection in 3D point clouds, a classical and foundational tool for analyzing geometry. We present a novel, fully unsupervised method that detects partial symmetry under significant geometric variability, and without constraints on the number and arrangement of instances. The core idea is a matching scheme that finds consistent co-occurrence patterns in a frame-invariant way. We obtain a canonical partition of the input shape into building blocks and can handle ambiguous data by aggregating co-occurrence information across both all building block instances and the area they cover. We evaluate our method on several benchmark data sets and dem…