0000000000309170
AUTHOR
S. Hegyi
Transverse momentum dependence ofηmeson suppression in Au+Au collisions atsNN=200GeV
New measurements by the PHENIX experiment at the Relativistic Heavy Ion Collider for. production at midrapidity as a function of transverse momentum ((PT)) and collision centrality in root s(NN) = 200 GeV Au + Au and p + p collisions are presented. They indicate nuclear modification factors (R-AA) which are similar in both magnitude and trend to those found in earlier pi(0) measurements. Linear fits to R-AA as a function of (PT) in 5-20 GeV/c show that the slope is consistent with zero within two standard deviations at all centralities, although a slow rise cannot be excluded. Having different statistical and systematic uncertainties, the pi(0) and eta measurements are complementary at high…
Trends in Yield and Azimuthal Shape Modification in Dihadron Correlations in Relativistic Heavy Ion Collisions
Fast parton probes produced by hard scattering and embedded within collisions of large nuclei have shown that partons suffer large energy loss and that the produced medium may respond collectively to the lost energy. We present measurements of neutral pion trigger particles at transverse momenta p^t_T = 4-12 GeV/c and associated charged hadrons (p^a_T = 0.5-7 GeV/c) as a function of relative azimuthal angle Delta Phi at midrapidity in Au+Au and p+p collisions at sqrt(s_NN) = 200 GeV. These data lead to two major observations. First, the relative angular distribution of low momentum hadrons, whose shape modification has been interpreted as a medium response to parton energy loss, is found to…
Azimuthal Anisotropy ofπ0Production inAu+AuCollisions atsNN=200 GeV: Path-Length Dependence of Jet Quenching and the Role of Initial Geometry
We have measured the azimuthal anisotropy of pi(0) production for 1 < p(T) < 18 GeV/c for Au + Au collisions at root s(NN) = 200 GeV. The observed anisotropy shows a gradual decrease for 3 less than or similar to p(T) less than or similar to 7-10 GeV/c, but remains positive beyond 10 GeV/c. The magnitude of this anisotropy is underpredicted, up to at least similar to 10 GeV/c, by current perturbative QCD (PQCD) energy-loss model calculations. An estimate of the increase in anisotropy expected from initial-geometry modification due to gluon saturation effects and fluctuations is insufficient to account for this discrepancy. Calculations that implement a path-length dependence steeper than wh…
Elliptic and Hexadecapole Flow of Charged Hadrons inAu+AuCollisions atsNN=200 GeV
Differential measurements of the elliptic (upsilon(2)) and hexadecapole (upsilon(4)) Fourier flow coefficients are reported for charged hadrons as a function of transverse momentum (p(T)) and collision centrality or number of participant nucleons (N-part) for Au + Au collisions at root s(NN) = 200 GeV/ The upsilon(2,4) measurements at pseudorapidity vertical bar eta vertical bar <= 0.35, obtained with four separate reaction-plane detectors positioned in the range 1.0 < vertical bar eta vertical bar < 3.9, show good agreement, indicating the absence of significant Delta eta-dependent nonflow correlations. Sizable values for upsilon(4)(p(T)) are observed with a ratio upsilon(4)(p(T), N-part)/…