0000000000309192

AUTHOR

Armin Kleibert

0000-0003-3630-9360

showing 5 related works from this author

Reflection high energy electron diffraction as a tool in cluster deposition experiments

2010

Reflection high energy electron diffraction (RHEED) is used to study the structure and orientation of mass-filtered iron clusters upon deposition ontoW(110). The present setup enables in situ investigations during deposition and thermal annealing. Particles as small as 2 nm at low density on the surface can be studied. The experiments reveal that larger particles with a diameter of about 13 nm are randomly oriented on the substrate with a preferred tendency to rest on their surface facets. Thermal annealing leads to a partial realignment and a significant flattening of the particles. In contrast 2 nm particles are found to align spontaneously in an epitaxial manner on W(110). Thermodynamic …

Reflection (mathematics)Reflection high-energy electron diffractionElectron diffractionChemistryCluster (physics)Analytical chemistryDeposition (phase transition)Substrate (electronics)Condensed Matter PhysicsEpitaxyMolecular physicsFlatteningElectronic Optical and Magnetic Materialsphysica status solidi (b)
researchProduct

Size-dependent alignment of Fe nanoparticles upon deposition onto W(110)

2010

Using in situ electron diffraction we study the orientation of mass-selected iron nanoparticles upon deposition onto single crystalline W(110) at room temperature. It is found that particles with a diameter below about 4 nm and a kinetic energy $\ensuremath{\le}0.1$ electron volt per atom spontaneously align with respect to the substrate. Larger particles preferentially rest with their (001) and (110) facets parallel to the surface, but do not show further alignment. The data may hint at thermally activated dislocation motions upon the impact on the substrate which are responsible for the observed orientation below 4 nm. By this uniformly oriented monodisperse nanostructures can be prepared…

CrystallographyNanostructureReflection high-energy electron diffractionMaterials scienceElectron diffractionAtomNanoparticleSubstrate (electronics)DislocationCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsElectron backscatter diffractionPhysical Review B
researchProduct

Control of the Magnetic Configuration of Ferromagnetic Nanostructures Across the Structural Phase Transition of Vanadium Dioxide

2016

We investigate the effect of the structural phase transition in VO 2 in magnetoelastically coupled heterostructures of VO 2 and Ni. Continuous and nano-patterned Ni layers were used, and we found reversible and reproducible magnetic domain switching induced by the VO 2 structural phase transition. The magnetic states of the nano-patterned ferromagnetic elements were dominated by topographic features which generated strong pinning but still allowed for a reversible switching between the states. Our measurements constitute a key step for the use of the VO 2 phase transition for ultrafast dynamical studies of the inverse mangetostrictive effect, and eventually employing the effect for ultrafas…

Phase transitionMaterials scienceNanostructureCondensed matter physicsMagnetic domainHeterojunction02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesElectronic Optical and Magnetic MaterialsMagnetic shape-memory alloyFerromagnetism0103 physical sciences010306 general physics0210 nano-technologySaturation (magnetic)Ultrashort pulseIEEE Magnetics Letters
researchProduct

Full angular dependence of the spin Hall and ordinary magnetoresistance in epitaxial antiferromagnetic NiO(001)/Pt thin films

2018

We report the observation of the three-dimensional angular dependence of the spin Hall magnetoresistance (SMR) in a bilayer of the epitaxial antiferromagnetic insulator NiO(001) and the heavy metal Pt, without any ferromagnetic element. The detected angular-dependent longitudinal and transverse magnetoresistances are measured by rotating the sample in magnetic fields up to 11 T, along three orthogonal planes (xy-, yz- and xz-rotation planes, where the z-axis is orthogonal to the sample plane). The total magnetoresistance has contributions arising from both the SMR and ordinary magnetoresistance. The onset of the SMR signal occurs between 1 and 3 T and no saturation is visible up to 11 T. Th…

Condensed Matter - Materials ScienceMaterials scienceCondensed matter physicsMagnetoresistance530 PhysicsNon-blocking I/OMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesMagnetostrictionInsulator (electricity)02 engineering and technology021001 nanoscience & nanotechnologyEpitaxy530 Physik01 natural sciencesCondensed Matter::Materials ScienceAmplitude0103 physical sciencesAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsThin film010306 general physics0210 nano-technology
researchProduct

Magnetization reversal of the domain structure in the anti-perovskite nitride Co3FeN investigated by high-resolution X-ray microscopy

2016

We performed X-ray magnetic circular dichroism (XMCD) photoemission electron microscopy imaging to reveal the magnetic domain structure of anti-perovskite nitride Co3FeN exhibiting a negative spin polarization. In square and disc patterns, we systematically and quantitatively determined the statistics of the stable states as a function of geometry. By direct imaging during the application of a magnetic field, we revealed the magnetic reversal process in a spatially resolved manner. We compared the hysteresis on the continuous area and the square patterns from the magnetic field-dependent XMCD ratio, which can be explained as resulting from the effect of the shape anisotropy, present in nano…

010302 applied physicsMaterials scienceCondensed matter physicsMagnetic domainGeneral Physics and AstronomyMagnetic resonance force microscopyLarge scale facilities for research with photons neutrons and ions02 engineering and technology021001 nanoscience & nanotechnologyMagnetic hysteresis01 natural sciencesMagnetic susceptibilityCondensed Matter::Materials ScienceParamagnetismMagnetic anisotropyX-ray magnetic circular dichroism0103 physical sciencesMagnetic force microscope0210 nano-technologyJournal of Applied Physics
researchProduct