On the Size Complexity of Deterministic Frequency Automata
Austinat, Diekert, Hertrampf, and Petersen [2] proved that every language L that is (m,n)-recognizable by a deterministic frequency automaton such that m > n/2 can be recognized by a deterministic finite automaton as well. First, the size of deterministic frequency automata and of deterministic finite automata recognizing the same language is compared. Then approximations of a language are considered, where a language L′ is called an approximation of a language L if L′ differs from L in only a finite number of strings. We prove that if a deterministic frequency automaton has k states and (m,n)-recognizes a language L, where m > n/2, then there is a language L′ approximating L such that L′ c…