0000000000309462

AUTHOR

Riccardo Frisenda

0000-0003-1728-7354

showing 2 related works from this author

Effect of Metal Complexation on the Conductance of Single-Molecular Wires Measured at Room Temperature

2014

The present work aims to give insight into the effect that metal coordination has on the room-temperature conductance of molecular wires. For that purpose, we have designed a family of rigid, highly conductive ligands functionalized with different terminations (acetylthiols, pyridines, and ethynyl groups), in which the conformational changes induced by metal coordination are negligible. The single-molecule conductance features of this series of molecular wires and their corresponding Cu(I) complexes have been measured in break-junction setups at room temperature. Experimental and theoretical data show that no matter the anchoring group, in all cases metal coordination leads to a shift towar…

02 engineering and technology010402 general chemistry01 natural sciencesBiochemistryCatalysissymbols.namesakeMolecular wireColloid and Surface ChemistryComputational chemistryMolecular conductanceMolecular orbitalLigandChemistryFermi levelSingle-MoleculeConductanceFermi energyGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesChemical physicsConductancesymbolsDensity functional theoryConductance; Single-Molecule; Break JunctionsBreak Junctions0210 nano-technologyJournal of the American Chemical Society
researchProduct

Ultra-broad spectral photo-response in FePS3 air-stable devices

2021

Van der Waals materials with narrow energy gaps and efficient response over a broadband optical spectral range are key to widen the energy window of nanoscale optoelectronic devices. Here, we characterize FePS as an appealing narrow-gap p-type semiconductor with an efficient broadband photo-response, a high refractive index, and a remarkable resilience against air and light exposure. To enable fast prototyping, we provide a straightforward guideline to determine the thickness of few-layered FePS nanosheets extracted from the optical transmission characteristics of several flakes. The analysis of the electrical photo-response of FePS devices as a function of the excitation energy confirms a …

Materials scienceFísica de la Materia CondensadaSpectral photo-response02 engineering and technology010402 general chemistrymedicine.disease_cause01 natural sciences7. Clean energysymbols.namesakeUltra-broadBroadbandmedicineGeneral Materials SciencePhotodetectors; FePS3; Ab-initio theory;Materials of engineering and construction. Mechanics of materialsQD1-999MaterialsFePS3PhotocurrentRange (particle radiation)business.industryMechanical EngineeringGeneral ChemistryAir-stable devices021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesChemistrySemiconductorMechanics of MaterialsTA401-492symbolsOptoelectronicsvan der Waals forceElectrònica Aparells i instruments0210 nano-technologybusinessRefractive indexUltravioletExcitation
researchProduct