0000000000309502

AUTHOR

C. Domingo

Pulse shape analysis of liquid scintillators for neutron studies

The acquisition of signals from liquid scintillators with Flash ADC of high sampling rate ð 1G S=sÞ has been investigated. The possibility to record the signal waveform is of great advantage in studies with g’s and neutrons in a high count-rate environment, as it allows to easily identify and separate pile-up events. The shapes of pulses produced by g-rays and neutrons have been studied for two different liquid scintillators, NE213 and C6D6: A 1-parameter fitting procedure is proposed, which allows to extract information on the particle type and energy. The performance of this method in terms of energy resolution and n=g discrimination is analyzed, together with the capability to identify a…

research product

Measurement of the n-TOF beam profile with a micromegas detector

A Micromegas detector was used in the neutron Time-Of-Flight (n_TOF) facility at CERN to evaluate the spatial distribution of the neutron beam as a function of its kinetic energy. This was achieved over a large range of neutron energies by using two complementary processes: at low energy by capture of a neutron via the 6Li(n,[alpha])t reaction, and at high energy by elastic scattering of neutrons on gas nuclei (argon+isobutane or helium+isobutane). Data are compared to Monte Carlo simulations and an analytic function fitting the beam profile has been calculated with a sufficient precision to use in neutron capture experiments at the n_TOF facility. http://www.sciencedirect.com/science/artic…

research product

MONSTER: a TOF Spectrometer for beta-delayed Neutron Spectroscopy

β-delayed neutron (DN) data, including emission probabilities, Pn, and energy spectrum, play an important role in our understanding of nuclear structure, nuclear astrophysics and nuclear technologies. A MOdular Neutron time-of-flight SpectromeTER (MONSTER) is being built for the measurement of the neutron energy spectra and branching ratios. The TOF spectrometer will consist of one hundred liquid scintillator cells covering a significant solid angle. The MONSTER design has been optimized by using Monte Carlo (MC) techniques. The response function of the MONSTER cell has been characterized with mono-energetic neutron beams and compared to dedicated MC simulations.

research product