0000000000309519

AUTHOR

Adam ŁUkasik

0000-0002-8817-3859

The influence of the wind direction and plants on the variability of topsoil magnetic susceptibility in industrial and urban areas of southern Poland

Volume magnetic susceptibility (κ) was measured on the soil surface and in the vertical topsoil profile within a 300 km2 area located in an urban-industrial conurbation. The results were compared to plant species compositions in the forest storeys, elevation above sea level, and terrain geomorphology. The content and mineral composition of the magnetic fraction were determined in the soil horizons. It was found that the extent of the area with enhanced topsoil magnetic susceptibility was similar to the dominant wind direction (south–west). Enhanced κ values were observed for the soil at the forest margin on the leeward side of the emitters as well as at sites located on exposed local elevat…

research product

Combination of geo- pedo- and technogenic magnetic and geochemical signals in soil profiles - Diversification and its interpretation: A new approach.

Magnetic and geochemical parameters of soils are determined with respect to geology, pedogenesis and anthropopression. Depending on local conditions these factors affect magnetic and geochemical signals simultaneously or in various configurations. We examined four type of soils (Entic Podzol, Eutric Cambisol, Humic Cambisol and Dystric Cambisol) developed on various bedrock (the Tumlin Sandstone, basaltoid, amphibolite and serpentinite, respectively). Our primary aim was to characterize the origin and diversification of the magnetic and geochemical signal in soils in order to distinguish the most reliable methods for correct interpretation of measured parameters. Presented data include sele…

research product

Quantification of pedogenic particles masked by geogenic magnetic fraction

AbstractPedogenic magnetic fraction in soils is attributed to fine-grained particles, i.e. superparamagnetic grains. In the case of a strongly magnetic geogenic fraction, pedogenic magnetic contribution is hard to detect. To the best of our knowledge, detailed research into the masking of pedogenic superparamagnetic grains and quantification of this effect has not yet been carried out. The principal aim of our research is to quantify the influence of coarse-grained ferrimagnetic fraction on the detection of the superparamagnetic grains. In order to describe the masking phenomenon, volume and frequency-dependent magnetic susceptibility were determined on a set of laboratory prepared samples …

research product