0000000000309585

AUTHOR

Pau Bernadó

0000-0001-7395-5922

showing 4 related works from this author

The importance of definitions in the study of polyQ regions: A tale of thresholds, impurities and sequence context

2020

Graphical abstract

lcsh:BiotechnologyGlutamineBiophysicsContext (language use)Computational biologyBiologyBiochemistrypolyQ03 medical and health sciences0302 clinical medicineStructural Biologylcsh:TP248.13-248.65GeneticsHuman proteome projectComputingMethodologies_COMPUTERGRAPHICS030304 developmental biologySequence (medicine)chemistry.chemical_classificationSequence context0303 health sciencesHomorepeatA proteinComputer Science ApplicationsAmino acidchemistry030220 oncology & carcinogenesisCodon usage biasProteomeCodon usageLength distributionResearch ArticleBiotechnologyComputational and Structural Biotechnology Journal
researchProduct

Disentangling the complexity of low complexity proteins

2020

Abstract There are multiple definitions for low complexity regions (LCRs) in protein sequences, with all of them broadly considering LCRs as regions with fewer amino acid types compared to an average composition. Following this view, LCRs can also be defined as regions showing composition bias. In this critical review, we focus on the definition of sequence complexity of LCRs and their connection with structure. We present statistics and methodological approaches that measure low complexity (LC) and related sequence properties. Composition bias is often associated with LC and disorder, but repeats, while compositionally biased, might also induce ordered structures. We illustrate this dichot…

Protein ConformationComputer scienceReview ArticleComputational biologyMeasure (mathematics)Evolution MolecularLow complexity03 medical and health sciencesProtein DomainsAmino Acid Sequencestructure[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]Databases ProteinMolecular Biology030304 developmental biologyStructure (mathematical logic)0303 health sciencesSequence[SCCO.NEUR]Cognitive science/Neurosciencecomposition bias030302 biochemistry & molecular biologyProteinsdisorderlow complexity regionsStructure and function[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM]AlgorithmsInformation SystemsBriefings in Bioinformatics
researchProduct

PED in 2021: a major update of the protein ensemble database for intrinsically disordered proteins

2020

Abstract The Protein Ensemble Database (PED) (https://proteinensemble.org), which holds structural ensembles of intrinsically disordered proteins (IDPs), has been significantly updated and upgraded since its last release in 2016. The new version, PED 4.0, has been completely redesigned and reimplemented with cutting-edge technology and now holds about six times more data (162 versus 24 entries and 242 versus 60 structural ensembles) and a broader representation of state of the art ensemble generation methods than the previous version. The database has a completely renewed graphical interface with an interactive feature viewer for region-based annotations, and provides a series of descriptor…

MESH: Databases ProteinMESH: Search EngineAcademicSubjects/SCI00010[SDV.BBM.BS] Life Sciences [q-bio]/Biochemistry Molecular Biology/Structural Biology [q-bio.BM][SDV]Life Sciences [q-bio]media_common.quotation_subjectBiologycomputer.software_genreIntrinsically disordered proteins03 medical and health sciencesDatabases0302 clinical medicineInformation and Computing SciencesGeneticsFeature (machine learning)Database IssueHumansDatabases ProteinRepresentation (mathematics)Function (engineering)MESH: Tumor Suppressor Protein p53ComputingMilieux_MISCELLANEOUS030304 developmental biologymedia_commonGraphical user interfaceStructure (mathematical logic)MESH: Intrinsically Disordered Proteins0303 health sciencesMESH: HumansDatabase[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry Molecular Biology/Structural Biology [q-bio.BM]business.industryProteinBiological Sciences[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM]MetadataSearch EngineIntrinsically Disordered ProteinsState (computer science)Generic health relevanceTumor Suppressor Protein p53businesscomputer030217 neurology & neurosurgeryEnvironmental SciencesDevelopmental Biology
researchProduct

Flanking regions determine the structure of the poly-glutamine homo- repeat in huntingtin through mechanisms common among glutamine-rich human protei…

2020

International audience; The causative agent of Huntington's disease, the poly-Q homo-repeat in the N-terminal region of huntingtin (httex1), is flanked by a 17-residue-long fragment (N17) and a proline-rich region (PRR), which promote and inhibit the aggregation propensity of the protein, respectively, by poorly understood mechanisms. Based on experimental data obtained from site-specifically labeled NMR samples, we derived an ensemble model of httex1 that identified both flanking regions as opposing poly-Q secondary structure promoters. While N17 triggers helicity through a promiscuous hydrogen bond network involving the side chains of the first glutamines in the poly-Q tract, the PRR prom…

Repetitive Sequences Amino AcidHuntingtinAmino Acid Motifs[SDV.BBM.BP] Life Sciences [q-bio]/Biochemistry Molecular Biology/Biophysics03 medical and health sciencesHuntington's diseaseStructural BiologyHuman proteome projectmedicineHumans[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]Molecular BiologyHuman proteinsProtein secondary structure[SDV.BBM.BC] Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]030304 developmental biology[INFO.INFO-BI] Computer Science [cs]/Bioinformatics [q-bio.QM]Huntingtin Protein0303 health sciencesChemistry030302 biochemistry & molecular biologyPromotermedicine.diseaseCell biologyIntrinsically Disordered ProteinsGlutamine[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry Molecular Biology/BiophysicsPolyglutamic Acid[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM]Low Complexity Region
researchProduct