0000000000309746

AUTHOR

Ulrich M. Zanger

TGF-β2 silencing to target biliary-derived liver diseases

ObjectiveTGF-β2 (TGF-β, transforming growth factor beta), the less-investigated sibling of TGF-β1, is deregulated in rodent and human liver diseases. Former data from bile duct ligated and MDR2 knockout (KO) mouse models for human cholestatic liver disease suggested an involvement of TGF-β2 in biliary-derived liver diseases.DesignAs we also found upregulated TGFB2 in liver tissue of patients with primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC), we now fathomed the positive prospects of targeting TGF-β2 in early stage biliary liver disease using the MDR2-KO mice. Specifically, the influence of TgfB2 silencing on the fibrotic and inflammatory niche was analysed on m…

research product

The induction of cytochrome P450 3A5 (CYP3A5) in the human liver and intestine is mediated by the xenobiotic sensors pregnane X receptor (PXR) and constitutively activated receptor (CAR).

Induction of cytochrome P450 3A (CYP3A) by xenobiotics may lead to clinically relevant drug interactions. In contrast with other CYP3A family members, studies on the inducibility of CYP3A5 indicate conflicting results. We report the induction of CYP3A5 mRNA in 13 of 16 hepatocyte preparations exposed to rifampin. Furthermore, induction of CYP3A5 mRNA was observed in intestinal biopsies in three of eight probands following exposure to the antibiotic. The highest absolute levels of CYP3A5 transcripts were found following rifampin treatment in hepatocytes and intestines from carriers of CYP3A5*1 alleles. Elucidation of the mechanism involved in CYP3A5 induction revealed that constitutively act…

research product

Genetic signature consistent with selection against the CYP3A4*1B allele in non-African populations.

Cytochrome P450 3A enzymes (CYP3A) play a major role in the metabolism of steroid hormones, drugs and other chemicals, including many carcinogens. The individually variable CYP3A expression, which remains mostly unexplained, has been suggested to affect clinical phenotypes. We investigated the CYP3A locus in five ethnic groups. The degree of linkage disequilibrium (LD) differed among ethnic groups, but the most common alleles of the conserved LD regions were remarkably similar. Non-African haplotypes are few; for example, only four haplotypes account for 80% of common European Caucasian alleles. Large LD blocks of high frequencies were suggestive of selection. Accordingly, European Caucasia…

research product

Carbonyl reductase 1 is a predominant doxorubicin reductase in the human liver.

A first step in the enzymatic disposition of the antineoplastic drug doxorubicin (DOX) is the reduction to doxorubicinol (DOX-OL). Because DOX-OL is less antineoplastic but more cardiotoxic than the parent compound, the individual rate of this reaction may affect the antitumor effect and the risk of DOX-induced heart failure. Using purified enzymes and human tissues we determined enzymes generating DOX-OL and interindividual differences in their activities. Human tissues express at least two DOX-reducing enzymes. High-clearance organs (kidney, liver, and the gastrointestinal tract) express an enzyme with an apparent Km of approximately 140 microM. Of six enzymes found to reduce DOX, Km valu…

research product

Sex-dependent genetic markers of CYP3A4 expression and activity in human liver microsomes

Objective: To find genetic markers of the individual cytochrome P450 (CYP)3A expression. Methods: A large collection of liver samples phenotyped for CYP3A expression and activity was genotyped for CYP3A variants. Data were analyzed for associations between CYP3A phenotypes and genotypes, and for evidence of recent selection. Results: We report associations between the hepatic CYP3A4 protein expression level, as well as its enzymatic activity, measured as verapamil N-dealkylation, and genetic polymorphisms from two regions within the CYP3A gene cluster. One region is defined by several variants, mostly located within CYP3A7, the other by a single nucleotide polymorphism in intron 7 of CYP3A…

research product

Contribution of CYP3A5 to the in vitro hepatic clearance of tacrolimus.

Abstract Background: Tacrolimus is metabolized predominantly to 13-O-demethyltacrolimus in the liver and intestine by cytochrome P450 3A (CYP3A). Patients with high concentrations of CYP3A5, a CYP3A isoenzyme polymorphically produced in these organs, require higher doses of tacrolimus, but the exact mechanism of this association is unknown. Methods: cDNA-expressed CYP3A enzymes and a bank of human liver microsomes with known CYP3A4 and CYP3A5 content were used to investigate the contribution of CYP3A5 to the metabolism of tacrolimus to 13-O-demethyltacrolimus as quantified by liquid chromatography–tandem mass spectrometry. Results: Demethylation of tacrolimus to 13-O-demethyltacrolimus was …

research product

6-mercaptopurine and 9-(2-phosphonyl-methoxyethyl) adenine (PMEA) transport altered by two missense mutations in the drug transporter gene ABCC4

Multiple drug resistance protein 4 (MRP4, ABCC4) belongs to the C subfamily of the ATP-binding cassette (ABC) transporter superfamily and participates in the transport of diverse antiviral and chemotherapeutic agents such as 6-mercaptopurine (6-MP) and 9-(2-phosphonyl methoxyethyl) adenine (PMEA). We have undertaken a comprehensive functional characterization of protein variants of MRP4 found in Caucasians and other ethnicities. A total of 11 MRP4 missense genetic variants (nonsynonymous SNPs), fused to green fluorescent protein (GFP), were examined in Xenopus laevis oocytes for their effect on expression, localization, and function of the transporter. Radiolabeled 6-MP and PMEA were chosen…

research product

Variability in human hepatic MRP4 expression: influence of cholestasis and genotype

The multidrug resistance protein 4 (MRP4) is an efflux transporter involved in the transport of endogenous substrates and xenobiotics. We measured MRP4 mRNA and protein expression in human livers and found a 38- and 45-fold variability, respectively. We sequenced 2 kb of the 5'-flanking region, all exons and intron/exon boundaries of the MRP4 gene in 95 patients and identified 74 genetic variants including 10 non-synonymous variations, seven of them being located in highly conserved regions. None of the detected polymorphisms was significantly associated with changes in the MRP4 mRNA or protein expression. Immunofluorescence microscopy indicated that none of the non-synonymous variations af…

research product