0000000000310050

AUTHOR

Mauricio Sepúlveda

Linearly implicit-explicit schemes for the equilibrium dispersive model of chromatography

Abstract Numerical schemes for the nonlinear equilibrium dispersive (ED) model for chromatographic processes with adsorption isotherms of Langmuir type are proposed. This model consists of a system of nonlinear, convection-dominated partial differential equations. The nonlinear convection gives rise to sharp moving transitions between concentrations of different solute components. This property calls for numerical methods with shock capturing capabilities. Based on results by Donat, Guerrero and Mulet (Appl. Numer. Math. 123 (2018) 22–42), conservative shock capturing numerical schemes can be designed for this chromatography model. Since explicit schemes for diffusion problems can pose seve…

research product

A Numerical Method for an Inverse Problem Arising in Two-Phase Fluid Flow Transport Through a Homogeneous Porous Medium

In this paper we study the inverse problem arising in the model describing the transport of two-phase flow in porous media. We consider some physical assumptions so that the mathematical model (direct problem) is an initial boundary value problem for a parabolic degenerate equation. In the inverse problem we want to determine the coefficients (flux and diffusion functions) of the equation from a set of experimental data for the recovery response. We formulate the inverse problem as a minimization of a suitable cost function and we derive its numerical gradient by means of the sensitivity equation method. We start with the discrete formulation and, assuming that the direct problem is discret…

research product