0000000000310055
AUTHOR
Renjie Chen
Influence of polymer flexibility on nanoparticle dynamics in semidilute solutions
The hierarchical structure and dynamics of polymer solutions control the transport of nanoparticles (NPs) through them. Here, we perform multi-particle collision dynamics simulations of solutions of semiflexible polymer chains with tunable persistence length lp to investigate the effect of chain stiffness on NP transport. The NPs exhibit two distinct dynamical regimes - subdiffusion on short time scales and diffusion on long time scales. The long-time NP diffusivities are compared with predictions from the Stokes-Einstein relation (SER), mode-coupling theory (MCT), and a recent polymer coupling theory (PCT). Increasing deviations from the SER as the polymer chains become more rigid (i.e. as…
Short term associations of ambient nitrogen dioxide with daily total, cardiovascular, and respiratory mortality: multilocation analysis in 398 cities
Objective To evaluate the short term associations between nitrogen dioxide (NO2) and total, cardiovascular, and respiratory mortality across multiple countries/regions worldwide, using a uniform analytical protocol. Design Two stage, time series approach, with overdispersed generalised linear models and multilevel meta-analysis. Setting 398 cities in 22 low to high income countries/regions. Main outcome measures Daily deaths from total (62.8 million), cardiovascular (19.7 million), and respiratory (5.5 million) causes between 1973 and 2018. Results On average, a 10 μg/m3 increase in NO2 concentration on lag 1 day (previous day) was associated with 0.46% (95% confidence interval 0.36% to 0.5…
Coupling of Nanoparticle Dynamics to Polymer Center-of-Mass Motion in Semidilute Polymer Solutions
We investigate the dynamics of nanoparticles in semidilute polymer solutions when the nanoparticles are comparably sized to the polymer coils using explicit- and implicit-solvent simulation methods. The nanoparticle dynamics are subdiffusive on short time scales before transitioning to diffusive motion on long time scales. The long-time diffusivities scale according to theoretical predictions based on full dynamic coupling to the polymer segmental relaxations. In agreement with our recent experiments, however, we observe that the nanoparticle subdiffusive exponents are significantly larger than predicted by the coupling theory over a broad range of polymer concentrations. We attribute this …
Nanoparticle dynamics in semidilute polymer solutions: Rings versus linear chains
We study the dynamics of nanoparticles in semidilute solutions of ring and linear polymers using hybrid molecular dynamics–multiparticle collision dynamics simulations. The dynamics of the monomers, the polymer centers-of-mass, and the nanoparticles coincide for these two architectures for solutions of the same monomer concentration. The long time diffusivities of the nanoparticles follow the predictions of a polymer coupling theory [Cai et al., Macromolecules 44, 7853–7863 (2011)], suggesting that nanoparticle dynamics are coupled to segmental relaxations for both polymer architectures examined here. At intermediate time scales, the nanoparticle dynamics are characterized by subdiffusive e…