0000000000310130

AUTHOR

D. Aristizabal Sierra

Leptoquarks: Neutrino masses and related accelerator signals

Leptoquark-Higgs interactions induce mixing between leptoquark (LQ) states with different chiralities once the electroweak symmetry is broken. In such LQ models Majorana neutrino masses are generated at 1-loop order. Here we calculate the neutrino mass matrix and explore the constraints on the parameter space enforced by the assumption that LQ-loops explain current neutrino oscillation data. LQs will be produced at the CERN LHC, if their masses are at or below the TeV scale. Since the fermionic decays of LQs are governed by the same Yukawa couplings, which are responsible for the nontrivial neutrino mass matrix, several decay branching ratios of LQ states can be predicted from measured neut…

research product

R-parity violating sneutrino decays

R-parity can be violated through either bilinear and/or trilinear terms in the superpotential. The decay properties of sneutrinos can be used to obtain information about the relative importance of these couplings provided sneutrinos are the lightest supersymmetric particles. We show that in some specific scenarios it is even possible to decide whether bilinear or trilinear terms give the dominant contribution to the neutrino mass matrix.

research product

Tri/Bi-maximal lepton mixing and leptogenesis

In models with flavour symmetries added to the gauge group of the Standard Model the CP-violating asymmetry necessary for leptogenesis may be related with low-energy parameters. A particular case of interest is when the flavour symmetry produces exact Tri-Bimaximal lepton mixing leading to a vanishing CP-violating asymmetry. In this paper we present a model-independent discussion that confirms this always occurs for unflavoured leptogenesis in type I see-saw scenarios, noting however that Tri-Bimaximal mixing does not imply a vanishing asymmetry in general scenarios where there is interplay between type I and other see-saws. We also consider a specific model where the exact Tri-Bimaximal mi…

research product

Leptogenesis with a dynamical seesaw scale

In the simplest type-I seesaw leptogenesis scenario right-handed neutrino annihilation processes are absent. However, in the presence of new interactions these processes are possible and can affect the resulting $B-L$ asymmetry in an important way. A prominent example is provided by models with spontaneous lepton number violation, where the existence of new dynamical degrees of freedom can play a crucial role. In this context, we provide a model-independent discussion of the effects of right-handed neutrino annihilations. We show that in the weak washout regime, as long as the scattering processes remain slow compared with the Hubble expansion rate throughout the relevant temperature range,…

research product

Experimental tests for the Babu-Zee two-loop model of Majorana neutrino masses

The smallness of the observed neutrino masses might have a radiative origin. Here we revisit a specific two-loop model of neutrino mass, independently proposed by Babu and Zee. We point out that current constraints from neutrino data can be used to derive strict lower limits on the branching ratio of flavour changing charged lepton decays, such as $\mu \to e \gamma$. Non-observation of Br($\mu \to e \gamma$) at the level of $10^{-13}$ would rule out singly charged scalar masses smaller than 590 GeV (5.04 TeV) in case of normal (inverse) neutrino mass hierarchy. Conversely, decay branching ratios of the non-standard scalars of the model can be fixed by the measured neutrino angles (and mass …

research product

Collider aspects of flavour physics at high Q

This chapter of the 'Flavor in the era of LHC' workshop report discusses flavor-related issues in the production and decays of heavy states at the LHC at high momentum transfer Q, both from the experimental and the theoretical perspective. We review top quark physics, and discuss the flavor aspects of several extensions of the standard model, such as supersymmetry, little Higgs models or models with extra dimensions. This includes discovery aspects, as well as the measurement of several properties of these heavy states. We also present publicly available computational tools related to this topic. © Springer-Verlag / Società Italiana di Fisica 2008.

research product

Systematic classification of two-loop realizations of the Weinberg operator

We systematically analyze the $d=5$ Weinberg operator at 2-loop order. Using a diagrammatic approach, we identify two different interesting categories of neutrino mass models: (i) Genuine 2-loop models for which both, tree-level and 1-loop contributions, are guaranteed to be absent. And (ii) finite 2-loop diagrams, which correspond to the 1-loop generation of some particular vertex appearing in a given 1-loop neutrino mass model, thus being effectively 2-loop. From the large list of all possible 2-loop diagrams, the vast majority are infinite corrections to lower order neutrino mass models and only a moderately small number of diagrams fall into these two interesting classes. Moreover, all …

research product

Light vector mediators facing XENON1T data

Recently the XENON1T collaboration has released new results on searches for new physics in low-energy electronic recoils. The data shows an excess over background in the low-energy tail, particularly pronounced at about $2-3$ keV. With an exposure of $0.65$ tonne-year, large detection efficiency and energy resolution, the detector is sensitive as well to solar neutrino backgrounds, with the most prominent contribution given by $pp$ neutrinos. We investigate whether such signal can be explained in terms of new neutrino interactions with leptons mediated by a light vector particle. We find that the excess is consistent with this interpretation for vector masses below $\lesssim 0.1$ MeV. The r…

research product

Reconstructing Neutrino Properties from Collider Experiments in a Higgs Triplet Neutrino Mass Model

We extend the minimal supersymmetric standard model with bilinear R-parity violation to include a pair of Higgs triplet superfields. The neutral components of the Higgs triplets develop small vacuum expectation values (VEVs) quadratic in the bilinear R-parity breaking parameters. In this scheme the atmospheric neutrino mass scale arises from bilinear R-parity breaking while for reasonable values of parameters the solar neutrino mass scale is generated from the small Higgs triplet VEVs. We calculate neutrino masses and mixing angles in this model and show how the model can be tested at future colliders. The branching ratios of the doubly charged triplet decays are related to the solar neutri…

research product