0000000000310173
AUTHOR
Mary Lilian Lourenço
A stronger Dunford-Pettis property
Boundaries for algebras of analytic functions on function module Banach spaces
We consider the uniform algebra of continuous and bounded functions that are analytic on the interior of the closed unit ball of a complex Banach function module X. We focus on norming subsets of , i.e., boundaries, for such algebra. In particular, if X is a dual complex Banach space whose centralizer is infinite-dimensional, then the intersection of all closed boundaries is empty. This also holds in case that X is an -sum of infinitely many Banach spaces and further, the torus is a boundary.
Polynomials generated by linear operators
We study the class of Banach algebra-valued n n -homogeneous polynomials generated by the n t h n^{th} powers of linear operators. We compare it with the finite type polynomials. We introduce a topology w E F w_{EF} on E , E, similar to the weak topology, to clarify the features of these polynomials.
The spectra of some algebras of analytic mappings
Abstract Let E be a Banach space with the approximation property and let F be a Banach algebra with identity. We study the spectrum of the algebra H b(E, F) of all holomorphic mappings f : E → F that are bounded on the bounded subsets of E.