0000000000310358

AUTHOR

Guido Toci

showing 4 related works from this author

Ultrathin Tropical Tropopause Clouds (UTTCs): II. Stabilization mechanisms

2003

Abstract. Mechanisms by which subvisible cirrus clouds (SVCs) might contribute to dehydration close to the tropical tropopause are not well understood. Recently Ultrathin Tropical Tropopause Clouds (UTTCs) with optical depths around 10-4 have been detected in the western Indian ocean. These clouds cover thousands of square kilometers as 200-300 m thick distinct and homogeneous layer just below the tropical tropopause. In their condensed phase UTTCs contain only 1-5% of the total water, and essentially no nitric acid. A new cloud stabilization mechanism is required to explain this small fraction of the condensed water content in the clouds and their small vertical thickness. This work sugges…

[SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereAtmospheric ScienceSupersaturationWork (thermodynamics)010504 meteorology & atmospheric sciencesChemistry[SDU.OCEAN] Sciences of the Universe [physics]/Ocean AtmosphereEvaporationAtmospheric sciences010502 geochemistry & geophysics01 natural scienceslcsh:QC1-999lcsh:Chemistrylcsh:QD1-999Liquid water content13. Climate actionPhase (matter)Tropical tropopauseddc:550UpwellingCirruslcsh:Physics0105 earth and related environmental sciencesUTTCsultrathin tropical tropospause
researchProduct

Ultrathin Tropical Tropopause Clouds (UTTCs) : I. Cloud morphology and occurrence

2003

Abstract. Subvisible cirrus clouds (SVCs) may contribute to dehydration close to the tropical tropopause. The higher and colder SVCs and the larger their ice crystals, the more likely they represent the last efficient point of contact of the gas phase with the ice phase and, hence, the last dehydrating step, before the air enters the stratosphere. The first simultaneous in situ and remote sensing measurements of SVCs were taken during the APE-THESEO campaign in the western Indian ocean in February/March 1999. The observed clouds, termed Ultrathin Tropical Tropopause Clouds (UTTCs), belong to the geometrically and optically thinnest large-scale clouds in the Earth's atmosphere. Individual UT…

[SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereAtmospheric Science010504 meteorology & atmospheric sciencesIce crystals[SDU.OCEAN] Sciences of the Universe [physics]/Ocean Atmosphere010501 environmental sciencesAtmospheric sciences01 natural scienceslcsh:QC1-999lcsh:ChemistryAtmospherelcsh:QD1-99913. Climate actionClimatologyPhase (matter)Tropical tropopauseMixing ratioddc:550Environmental scienceCirrusTropopauseStratospherelcsh:Physics0105 earth and related environmental sciences
researchProduct

CEFLES2: The remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the …

2009

The CEFLES2 campaign during the Carbo Europe Regional Experiment Strategy was designed to provide simultaneous airborne measurements of solar induced fluorescence and CO<sub>2</sub> fluxes. It was combined with extensive ground-based quantification of leaf- and canopy-level processes in support of ESA's Candidate Earth Explorer Mission of the "Fluorescence Explorer" (FLEX). The aim of this campaign was to test if fluorescence signal detected from an airborne platform can be used to improve estimates of plant mediated exchange on the mesoscale. Canopy fluorescence was quantified from four airborne platforms using a combination of novel sensors: (i) the prototype ai…

Imaging spectrometerMesoscale meteorology1904 Earth-Surface Processeslcsh:Life550 - Earth sciencesPhotosynthetic efficiencyINDUCED CHLOROPHYLL FLUORESCENCE; GROSS PRIMARY PRODUCTION; LIGHT-USE EFFICIENCY; STEADY-STATE; WATER-STRESS; REFLECTANCE; FIELD; HETEROGENEITY; DYNAMICS; BOREALremote sensingEvapotranspirationddc:570lcsh:QH540-549.5910 Geography & travelTransectEcology Evolution Behavior and SystematicsEarth-Surface ProcessesRemote sensingphotosynthesisSpectrometerlcsh:QE1-996.5Hyperspectral imagingFluorescenceFLEX Fluorescence AHS HYPER AirFLEXJlcsh:Geologylcsh:QH501-531GEO/10 - GEOFISICA DELLA TERRA SOLIDA10122 Institute of Geography1105 Ecology Evolution Behavior and SystematicsEnvironmental sciencefluorescencelcsh:Ecologyoxygenprimary production
researchProduct

Dehydration potential of ultrathin clouds at the tropical tropopause

2003

[1] We report on the first simultaneous in situ and remote measurements of subvisible cirrus in the uppermost tropical troposphere. The observed cirrus, called UTTCs ( ultrathin tropical tropopause clouds), are the geometrically (200-300 m) and optically (t approximate to 10(-4)) thinnest large-scale clouds ever sampled (approximate to10(5) km(2)). UTTCs consist of only a few ice particles per liter with mean radius approximate to5 mum, containing only 1-5 % of the total water. Yet, brief adiabatic cooling events only 1-2 K below mean ambient temperature destabilize UTTCs, leading to large sedimenting particles (r approximate to 25 mm). Due to their extreme altitude above 17 km and low part…

Ice cloudMaterials scienceIce crystalsparticle micro-physicsdehydrationtropical tropopauseRadiusAtmospheric sciencesJTroposphereGeophysicsAltitudeddc:550General Earth and Planetary SciencesCirrussubvisible cirrus cloudsTropopauseStratosphere
researchProduct