0000000000311300

AUTHOR

Agnès Ducharne

showing 2 related works from this author

Evaluation of the most recent reprocessed SMOS soil moisture products: Comparison between SMOS level 3 V246 and V272

2015

International audience; Soil Moisture and Ocean Salinity (SMOS) satellite has been providing surface soil moisture (SSM) and ocean salinity (OS) retrievals at L-band for five years (2010–2014). During these five years, the SSM retrieval algorithm i.e. the L-MEB (L-Band Microwave Emission of the Biosphere [1] model has been progressively improved and hence results in different versions of the SMOS SSM products. This study aims at evaluating the last improvement in the SSM products of the most recent SMOS level 3 (SMOSL3) reprocessing (SMOSL3_2.72) vs. an earlier version (SMOSL3_246). Correlation, bias, Root Mean Square Difference (RMSD) and unbiased RMSD (unbRMSD) were used as perform…

Meteorologyland surfaceEquatorBiosphereRoot mean square differenceSM-DAS-2hydrologyAridSalinityremote sensingsatellites13. Climate actionClimatologyHigh latitudecorrelationEnvironmental scienceSatellitesoil moisturemicrowave theory and techniquesWater content[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingSMOS
researchProduct

Interannual Variability of Biomass (SMOS Vegetation Optical Depth) Over the Contiguous United States

2021

Interannual variability in biomass represented by SMOS vegetation optical depth (VOD) and precipitation was assessed over the Contiguous United States. The greatest interannual variability in both VOD and precipitation occurred in shrubs and herbaceous (grasslands), with forests the least variable. At a continental scale, VOD was strongly correlated with annual precipitation. Results showed a significant correlation coefficient (∼ 0.93) between interannual variability of precipitation and biomass, indicating that the interannual variability of precipitation could be a good predictor of the interannual variability of biomass.

Biomass (ecology)Vegetation optical depthCorrelation coefficientfood and beveragesEnvironmental sciencePrecipitationVegetationHerbaceous plantAtmospheric sciencescomplex mixtures2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS
researchProduct