0000000000311408
AUTHOR
M. Angeles Máñez
Equilibrium and kinetic studies on complex formation and decomposition and the movement of Cu2+metal ions within polytopic receptors
Potentiometric studies carried out on the interaction of two tritopic double-scorpiand receptors in which two equivalent 5-(2-aminoethyl)-2,5,8-triaza[9]-(2,6)-pyridinophane moieties are linked with 2,9-dimethylphenanthroline (L1) and 2,6-dimethylpyridine (L2) establish the formation of mono-, bi- and trinuclear Cu(2+) complexes. The values of the stability constants and paramagnetic (1)H NMR studies permit one to infer the most likely coordination modes of the various complexes formed. Kinetic studies on complex formation and decomposition have also been carried out. Complex formation occurs with polyphasic kinetics for both receptors, although a significant difference is found between bot…
Equilibrium and kinetics studies on bibrachial lariat aza-crown/Cu(II) systems reveal different behavior associated with small changes in the structure
Abstract The high-yield synthesis of a new bibrachial lariat azacrown constituted by two tris(2-aminoethyl)amine (tren) units functionalized in one of its arms with a 4-methylquinoline group linked by dimethylene pyridine spacers (L2) is reported for the first time. The speciation studies show formation of mono- and binuclear Cu2+ complexes of similar stability. Comparisons are established with the complexes formed by the precursor tren-quinoline derivative (L4) and with the previously reported ligands containing naphthalene instead of quinoline as the fluorophore (L1, L3). The kinetics of formation and decomposition of Cu2+ complexes with L1 and L2 has been studied. For L1, the acid-promot…
Copper(II) complexes of quinoline polyazamacrocyclic scorpiand-type ligands: X-ray, equilibrium and kinetic studies
The formation of Cu(II) complexes with two isomeric quinoline-containing scorpiand-type ligands has been studied. The ligands have a tetraazapyridinophane core appended with an ethylamino tail including 2-quinoline (L1) or 4-quinoline (L2) functionalities. Potentiometric studies indicate the formation of stable CuL(2+) species with both ligands, the L1 complex being 3-4 log units more stable than the L2 complex. The crystal structure of [Cu(L1)](ClO(4))(2)·H(2)O shows that the coordination geometry around the Cu(2+) ions is distorted octahedral with significant axial elongation; the four Cu-N distances in the equatorial plane vary from 1.976 to 2.183 Å, while the axial distances are of 2.27…
Hydrogen and copper ion-induced molecular reorganizations in scorpionand-like ligands. A potentiometric, mechanistic, and solid-state study.
Two aza scorpionand-like macrocycles (L2 and L3) have been prepared. L2 consists of a tren amine with two of its arms cyclizized with a 2,6-bis(bromomethyl)pyridine. In L3, the remaining pendant arm has been further functionalized with a fluorophoric naphthalene group. X-ray data on the compounds [H(L3)]ClO4.H2O (1) and [H3(L3)](H2PO4)3.H2O (2) as well as solution studies (pH-metry, UV-vis, and fluorescence data) show the movement of the pendant arm as a result of the protonation degree of the macrocycles and of the formation of intramolecular hydrogen bonds. X-ray data on the complexes [Cu(L2)](ClO4)2]2.H2O (3) and [Cu(L3)](ClO4)2 (4) and solution studies on Cu2+ coordination show the impl…
Hydrogen and Copper Ion Induced Molecular Reorganizations in Two New Scorpiand-Like Ligands Appended with Pyridine Rings
The synthesis of two new ligands constituted of a tris(2-aminoethyl)amine moiety linked to the 2,6 positions of a pyridine spacer through methylene groups in which the hanging arm is further functionalized with a 2-pycolyl (L1) or 3-pycolyl (L2) group is presented. The protonation of L1 and L2 and formation of Cu(2+) complexes have been studied using potentiometric, NMR, X-ray, and kinetic experiments. The results provide new information about the relevance of molecular movements in the chemistry of this kind of so-called scorpiand ligand. The comparison between these two ligands that only differ in the position of the substituent at the arm reveals important differences in both thermodynam…
Methylation as an effective way to generate SOD-activity in copper complexes of scorpiand-like azamacrocyclic receptors
Abstract Methylation of the secondary amine groups of a scorpiand-type ligand consisting of a pyridine spacer connected through methylene groups to a tris(2-aminomethyl) unit with the pendant arm further functionalised with a 3-pyridine unit leads to a ligand whose Cu(II) complex exhibits threefold enhanced SOD activity with respect to the non-methylated ligand. Potentiometric studies indicate the formation of [CuL] 2+ species with a stability three orders of magnitude lower than that formed with the related non-methylated ligand. Kinetic studies indicate that methylation of the secondary nitrogens causes a deceleration of both the complex formation and the acid-induced dissociation of the …
Coordination Chemistry of Cu2+ Complexes of Small N-Alkylated Tetra-azacyclophanes with SOD Activity
A new tetraaza-pyridinophane macrocycle (L1) N-alkylated with two isopropyl and one methyl groups symmetrically disposed has been prepared and its behavior compared with those of the unsubstituted pyridinophane (L3) and the related compound with three methyl groups (L2). The protonation studies show that, first, a proton binds to the central methylated amine group of L1, while, second protonation leads to a reorganization of the protons that are at this stage attached to the lateral isopropylated amines. The X-ray structure of [HL1]+ agrees with the UV–vis and NMR studies as well as with the results of DFT calculations. The stability of the Cu2+ complexes decreases on increasing the bulkine…
Synthesis and Cu(II) coordination of two new hexaamines containing alternated propylenic and ethylenic chains: Kinetic studies on pH-driven metal ion slippage movements
Abstract The synthesis of the open-chain and cyclic polyamines, 1,5,8,12,15,19-hexaazaheptadecane (L1) and 2,6,9,13,16,20-hexaaza[21]-(2,6)-pyridinophane (L2), are described. The protonation constants and interaction constants with Cu(II) have been determined by potentiometric measurements carried out at 298.1 K in 0.15 mol dm −3 NaClO 4 . The values obtained are discussed as a function of the open-chain or cyclic nature of the ligands and compared with analogous polyamines containing different sets of hydrocarbon chains between the nitrogen donors. Kinetic studies on the acid-promoted dissociation of the Cu(II) complexes indicate that the mono and binuclear complexes of L1 decompose with d…
Hydrogen-ion driven molecular motions in Cu2+-complexes of a ditopic phenanthrolinophane ligand
One of the first kinetic evaluations of a metal ion interchange between the two coordination sites of a ditopic macrocycle is presented. Garcia-España Monsonis, Enrique, Enrique.Garcia-Es@uv.es ; Soriano Soto, Concepción, Concepcion.Soriano@uv.es ; Verdejo Viu, Begoña, Begona.Verdejo@uv.es
Synthesis, Protonation and Cu II Complexes of Two Novel Isomeric Pentaazacyclophane Ligands: Potentiometric, DFT, Kinetic and AMP Recognition Studies
The synthesis and coordination chemistry of two novel ligands, 2,6,9,12,16-pentaaza[17]metacyclophane (L1) and 2,6,9,12,16-pentaaza[17]paracyclophane (L2), is described. Potentiometric studies indicate that L1 and L2 form a variety of mononuclear complexes the stability constants of which reveal a change in the denticity of the ligand when moving from L1 to L2, a behaviour that can be qualitatively explained by the inability of the paracyclophanes to simultaneously use both benzylic nitrogen atoms for coordination to a single metal centre. In contrast, the formation of dinuclear hydroxylated complexes is more favoured for the paraL2 ligand. DFT calculations have been carried out to compare …
Structural reorganisation in polytopic receptors revealed by kinetic studies.
One of the first kinetic studies of metal ion reorganisation between the different sites of a tritopic polyaza ligand reveals well defined pathways for the movement of the metal ion.
Geometric Isomerism in Pentacoordinate Cu2+ Complexes: Equilibrium, Kinetic, and Density Functional Theory Studies Reveal the Existence of Equilibrium between Square Pyramidal and Trigonal Bipyramidal Forms for a Tren-Derived Ligand
A ligand (L1) (bis(aminoethyl)[2-(4-quinolylmethyl)aminoethyl]amine) containing a 4-quinolylmethyl group attached to one of the terminal amino groups of tris(2-aminoethyl)amine (tren) has been prepared, and its protonation constants and stability constants for the formation of Cu(2+) complexes have been determined. Kinetic studies on the formation of Cu(2+) complexes in slightly acidic solutions and on the acid-promoted complex decomposition strongly suggest that the Cu(2+)-L1 complex exists in solution as a mixture of two species, one of them showing a trigonal bipyramidal (tbp) coordination environment with an absorption maximum at 890 nm in the electronic spectrum, and the other one bein…
Stability and kinetics of the acid-promoted decomposition of Cu(II) complexes with hexaazacyclophanes: kinetic studies as a probe to detect changes in the coordination mode of the macrocycles.
The synthesis, protonation and Cu(II) coordination features of the novel azacyclophane type receptors 2,6,10,13,17,21-hexaza[22]-(2,6)-pyridinophane (L2), 2,6,9,12,15,19-hexaza[20]-(2,6)-pyridinophane (L5) and 2,6,9,12,15,19-hexaza[20]metacyclophane (L6) are presented. The protonation and Cu(II) constants are analysed and compared with the previously reported open-chain polyamines 4,8,11,15-tetrazaoctadecane-1,18-diamine (L1) and 4,7,10,13-tetraazahexadecane-1,16-diamine (L4) and of the cyclophane 2,6,10,13,17,21-hexaaza[22]paracyclophane (L3). All the systems form mono- and dinuclear complexes whose stability and pH range of existence depend on the type of hydrocarbon chains and molecular …
CCDC 1559249: Experimental Crystal Structure Determination
Related Article: Aida Nebot-Guinot, Andrea Liberato, M. Angeles Máñez, M. Paz Clares, Antonio Doménech, Javier Pitarch-Jarque, Alvaro Martínez-Camarena, Manuel G. Basallote, Enrique García-España|2018|Inorg.Chim.Acta|472|139|doi:10.1016/j.ica.2017.08.044
CCDC 1559236: Experimental Crystal Structure Determination
Related Article: Aida Nebot-Guinot, Andrea Liberato, M. Angeles Máñez, M. Paz Clares, Antonio Doménech, Javier Pitarch-Jarque, Alvaro Martínez-Camarena, Manuel G. Basallote, Enrique García-España|2018|Inorg.Chim.Acta|472|139|doi:10.1016/j.ica.2017.08.044
CCDC 1423684: Experimental Crystal Structure Determination
Related Article: Salvador Blasco, Begoña Verdejo, M. Paz Clares, Carmen E. Castillo, Andrés G. Algarra, Julio Latorre, M. Angeles Máñez, Manuel G. Basallote, Conxa Soriano and Enrique García-España|2010|Inorg.Chem.|49|7016|doi:10.1021/ic100609h