0000000000311440

AUTHOR

Marco Buscetta

Cigarette smoke promotes inflammasome‐independent activation of caspase‐1 and ‐4 leading to gasdermin D cleavage in human macrophages

Mechanisms and consequences of gasdermin D (GSDMD) activation in cigarette smoke (CS)-associated inflammation and lung disease are unknown. GSDMD is a downstream effector of caspase-1, -8, and -4. Upon cleavage, GSDMD generates pores into cell membranes. Different degrees of GSDMD activation are associated with a range of physiological outputs ranging from cell hyperactivation to pyroptosis. We have previously reported that in human monocyte-derived macrophages CS extract (CSE) inhibits the NLRP3 inflammasome and shifts the response to lipopolysaccharide (LPS) towards the TLR4-TRIF axis leading to activation of caspase-8, which, in turn, activates caspase-1. In the present work, we investig…

research product

Development of a nanostructured sensor for monitoring oxidative stress in living cells

Oxidative burden is elevated in the lung of COPD patients and is associated with aging and chronic inflammation. When overcoming physiological levels, reactive oxygen species (ROS) cause cell damage and sustain inflammation. Both lung epithelium and alveolar macrophages contribute to ROS generation. Currently, ROS generation is measured using fluorescent probes and colorimetric/fluorimetric assays. We present an amperometric nanostructured sensor for real-time detection of hydrogen peroxide (H2O2) released by living cells. The H2O2 sensing performance was evaluated through the current vs time response of platinum rod at a working potential of −0.45 V vs saturated calomel electrode acting as…

research product

Electrochemical sensor based on rGO/Au nanoparticles for monitoring H2O2 released by human macrophages

Abstract Increased oxidative burden contributes to the pathogenesis of most inflammatory diseases and is associated with aging and chronic inflammation. Macrophages contribute to the generation of reactive oxygen species (ROS) within inflamed tissues. Currently, ROS generation is measured using fluorescent probes and colorimetric/fluorimetric biochemical assays. Hydrogen peroxide (H2O2) diffuses through the cell membrane and can be monitored in the extracellular space. Herein, we present a sensor for H2O2 detection released by cells in culture supernatants. H2O2 sensing performance was evaluated using chronoamperometric detection. A sensitivity of 0.0641 μA μM−1 cm−2 with a limit of detecti…

research product

Electrochemical sensor for evaluating oxidative stress in airway epithelial cells

Cigarette smoke exposure induces oxidative stress within the airways. Increased oxidative burden contributes to the pathogenesis of chronic lung disorders and is associated with aging and chronic inflammation. Airway epithelial cells highly contribute to Reactive Oxygen Species (ROS) generation within injured and inflamed lung tissues. Among ROS, hydrogen peroxide (H2O2) can be monitored in the extracellular space. Herein, we present an amperometric/voltammetric sensor based on gold nanoparticles and graphene oxide able to detect H2O2 with good sensitivity and selectivity. Using this sensor, H2O2 release was measured in conditioned medium from primary bronchial epithelial cells (PBEC), bron…

research product

Cellular Models and Assays to Study NLRP3 Inflammasome Biology

The NLRP3 inflammasome is a multi-protein complex that initiates innate immunity responses when exposed to a wide range of stimuli, including pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs). Inflammasome activation leads to the release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 and to pyroptotic cell death. Over-activation of NLRP3 inflammasome has been associated with several chronic inflammatory diseases. A deep knowledge of NLRP3 inflammasome biology is required to better exploit its potential as therapeutic target and for the development of new selective drugs. To this purpose, in the past few years, several tools have…

research product