0000000000311450
AUTHOR
Oscar Sahuquillo
Proton conductivity through polybenzimidazole composite membranes containing silica nanofiber mats
The quest for sustainable and more efficient energy-converting devices has been the focus of researchers&prime
Ionic Liquid Composite Polybenzimidazol Membranes for High Temperature PEMFC Applications
A series of proton exchange membranes based on polybenzimidazole (PBI) were prepared using the low cost ionic liquids (ILs) derived from 1-butyl-3-methylimidazolium (BMIM) bearing different anions as conductive fillers in the polymeric matrix with the aim of enhancing the proton conductivity of PBI membranes. The composite membranes prepared by casting method (containing 5 wt. % of IL) exhibited good thermal, dimensional, mechanical, and oxidative stability for fuel cell applications. The effects of anion, temperature on the proton conductivity of phosphoric acid-doped membranes were systematically investigated by electrochemical impedance spectroscopy. The PBI composite membranes containin…
Diffusivity and free anion concentration of ionic liquid composite polybenzimidazole membranes.
[EN] In this article, PBI composite membranes containing the ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMIM-NTf2) at 1, 5, 10, 20 and 50 wt% (named PBI-IL-x) have been prepared by a casting method. The internal morphology of the membranes was analyzed by scanning electron microscopy (SEM), revealing that the incorporation of IL promotes the formation of porous channels. Thermal and mechanical stability was confirmed by thermogravimetric analysis (TGA) and tensile test measurements. The ionic transport through membranes was analysed by means of electrochemical impedance spectroscopy (EIS), showing a dependence on the IL loading, reaching a highest condu…
Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Significantly Enhanced Proton Conductivity under Low Humidity Conditions
The preparation and characterization of composite polybenzimidazole (PBI) membranes containing zeolitic imidazolate framework 8 (ZIF-8) and zeolitic imidazolate framework 67 (ZIF-67) is reported. The phosphoric acid doped composite membranes display proton conductivity values that increase with increasing temperatures, maintaining their conductivity under anhydrous conditions. The addition of ZIF to the polymeric matrix enhances proton transport relative to the values observed for PBI and ZIFs alone. For example, the proton conductivity of PBI@ZIF-8 reaches 3.1 10&minus