0000000000311495

AUTHOR

E. Lellouch

showing 2 related works from this author

A Pluto-like radius and a high albedo for the dwarf planet Eris from an occultation

2011

The dwarf planet Eris is a trans-Neptunian object with an orbital eccentricity of 0.44, an inclination of 44 degrees and a surface composition very similar to that of Pluto. It resides at present at 95.7 astronomical units (1ĝ€‰au is the Earth-Sun distance) from Earth, near its aphelion and more than three times farther than Pluto. Owing to this great distance, measuring its size or detecting a putative atmosphere is difficult. Here we report the observation of a multi-chord stellar occultation by Eris on 6 November 2010 ut. The event is consistent with a spherical shape for Eris, with radius 1,163±6 kilometres, density 2.52±0.05 grams per cm 3 and a high visible geometric albedo,. No nitro…

010504 meteorology & atmospheric sciences[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP]Ciencias FísicasAstronomical unitDwarf planet[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP]Orbital eccentricityAstrophysicsno utilizado01 natural sciences7. Clean energyOccultationdwarf planetAtmosphere0103 physical sciencesTrans-Neptunian object010303 astronomy & astrophysicsEris0105 earth and related environmental sciencesPhysicsMultidisciplinarybiologyPlutoAstronomybiology.organism_classificationPlutoAstronomíaEris13. Climate actionCIENCIAS NATURALES Y EXACTASalbedo
researchProduct

Applications of a new set of methane line parameters to the modeling of Titan's spectrum in the 1.58 μm window

2012

International audience; In this paper we apply a recently released set of methane line parameters (Wang et al., 2011) to the modeling of Titan spectra in the 1.58 mu m window at both low and high spectral resolution. We first compare the methane absorption based on this new set of methane data to that calculated from the methane absorption coefficients derived in situ from DISR/Huygens (Tomasko et al., 2008a; Karkoschka and Tomasko, 2010) and from the band models of Irwin et al. (2006) and Karkoschka and Tomasko (2010). The Irwin et al. (2006) band model clearly underestimates the absorption in the window at temperature-pressure conditions representative of Titan's troposphere, while the Ka…

010504 meteorology & atmospheric sciencesInfraredCASSINI VIMSHUYGENS PROBEMONODEUTERATED METHANEAtmospheric sciences01 natural sciences7. Clean energyMethaneSpectral lineTropospherechemistry.chemical_compoundsymbols.namesake0103 physical sciencesSpectral resolutionSpectroscopy010303 astronomy & astrophysicsCLOUD STRUCTURE0105 earth and related environmental sciencesPhysics[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Astronomy and Astrophysics9500 CM(-1)SPECTROSCOPIC DATABASEM TRANSPARENCY WINDOWComputational physicsAerosolchemistry[ PHYS.PHYS.PHYS-AO-PH ] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]TEMPERATURE-DEPENDENCE13. Climate actionSpace and Planetary SciencesymbolsSHIFT COEFFICIENTSOUTER SOLAR-SYSTEMTitan (rocket family)
researchProduct