0000000000311665
AUTHOR
Maria Elena Candela
Membrane vesicles containing matrix metalloproteinase-9 and fibroblast growth factor-2 are released into the extracellular space from mouse mesoangioblast Sstem cells
Certain proteins, including fibroblast growth factor-2 (FGF-2) and matrix metalloproteinase-9 (MMP-9), have proved very effective in increasing the efficacy of mesoangioblast stem cell therapy in repairing damaged tissue. We provide the first evidence that mouse mesoangioblast stem cells release FGF-2 and MMP-9 in their active form through the production of membrane vesicles. These vesicles are produced and turned over continuously, but are stable for some time in the extracellular milieu. Mesoangioblasts shed membrane vesicles even under oxygen tensions that are lower than those typically used for cell culture and more like those of mouse tissues. These findings suggest that mesoangioblast…
Hsp70 localizes differently from chaperone Hsc70 in mouse mesoangioblasts under physiological growth conditions
Mouse A6 mesoangioblasts express Hsp70 even in the absence of cellular stress. Its expression and its intracellular localization were investigated under normal growth conditions and under hyperthermic stress. Immunofluorescence assays indicated that without any stress a fraction of Hsp70 co-localized with actin microfilaments, in the cell cortex and in the contractile ring of dividing cells, while the Hsc70 chaperone did not. Hsp70 immunoprecipitation assays confirmed that a portion of Hsp70 binds actin. Immunoblot assays showed that both proteins were present in the nucleus. After heat treatment Hsp70 and actin continued to co-localize in the leading edge of A6 cells but not on microfilame…
Hsp70 is required for optimal cell proliferation in mouse A6 mesoangioblast stem cells.
Mouse Hsp70 (70 kDa heat shock protein) is preferentially induced by heat or stress stimuli. We previously found that Hsp70 is constitutively expressed in A6 mouse mesoangioblast stem cells, but its possible role in these cells and the control of its basal transcription remained unexplored. Here we report that in the absence of stress, Ku factor is able to bind the HSE (heat shock element) consensus sequence in vitro, and in vivo it is bound to the proximal hsp70 promoter. In addition, we show that constitutive hsp70 transcription depends on the co-operative interaction of different factors such as Sp1 (specificity protein 1) and GAGA-binding protein with Ku factor, which binds the HSE cons…