0000000000311883

AUTHOR

Franziska Mueller

Facile hybridization of Ni@Fe2O3 superparticles with functionalized reduced graphene oxide and its application as anode material in lithium-ion batteries

Abstract In our present work we developed a novel graphene wrapping approach of Ni@Fe2O3 superparticles, which can be extended as a concept approach for other nanomaterials as well. It uses sulfonated reduced graphene oxide, but avoids thermal treatments and use of toxic agents like hydrazine for its reduction. The modification of graphene oxide is achieved by the introduction of sulfate groups accompanied with reduction and elimination reactions, due to the treatment with oleum. The successful wrapping of nanoparticles is proven by energy dispersive X-ray spectroscopy, high-resolution transmission electron microscopy and Raman spectroscopy. The developed composite material shows strongly i…

research product

Precursor Polymers for the Carbon Coating of Au@ZnO Multipods for Application as Active Material in Lithium-Ion Batteries

The synthesis of statistical and block copolymers based on polyacrylonitrile, as a source for carbonaceous materials, and thiol-containing repeating units as inorganic nanoparticle anchoring groups is reported. These polymers are used to coat Au@ZnO multipod heteroparticles with polymer brushes. IR spectroscopy and transmission electron microscopy prove the successful binding of the polymer onto the inorganic nanostructures. Thermogravimetric analysis is applied to compare the binding ability of the block and statistical copolymers. Subsequently, the polymer coating is transformed into a carbonaceous (partially graphitic) coating by pyrolysis. The obtained carbon coating is characterized by…

research product

Synthesis and characterization of carbon coated sponge-like tin oxide (SnOx) films and their application as electrode materials in lithium-ion batteries

Nanoporous metal oxides are widely used for the development of various functional nanostructures. We report on the synthesis of sponge-like tin oxide films on copper foil by anodization of electrochemically deposited tin films. The thin films are functionalized using a surface-anchoring carbon precursor-polymer (poly(acrylonitrile-b-dopamine acrylamide)) followed by annealing at elevated temperature to convert the polymer coating into a carbonaceous coating. The as prepared and the carbon coated films are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and Raman spectroscopy. Subsequently, both SnOx films are employed as a…

research product

Carbon-Coated Anatase TiO2Nanotubes for Li- and Na-Ion Anodes

aInstitute of Physical Chemistry and MEET Battery Research Centre, University of Muenster, 48149 Muenster, Germany bHelmholtz-Institute Ulm (HIU), Electrochemistry I, 89081 Ulm, Germany cKarlsruher Institute of Technology (KIT), 76021 Karlsruhe, Germany dInstitute for Organic Chemistry, University of Mainz, 55128 Mainz, Germany eGraduate School Materials Science in Mainz, 55128 Mainz, Germany fInstitute for Inorganic and Analytical Chemistry, University of Mainz, 55128 Mainz, Germany gMax Planck Institute for Polymer Research, 55128 Mainz, Germany

research product