0000000000312016
AUTHOR
J. Birkhan
First operation of the superconducting Darmstadt linear electron accelerator as an energy recovery linac
The superconducting Darmstadt linear electron accelerator (S-DALINAC) has been operated as an energy recovery linac (ERL) for the first time. The S-DALINAC is a recirculating superconducting radio-frequency (SRF) accelerator and had been upgraded with an additional recirculation beamline. It features a path length adjustment system that provides a freedom of choice of 360\ifmmode^\circ\else\textdegree\fi{} for the rf phase difference between the electron bunches recirculated through the new beamline and the phase of the accelerating ${\mathrm{TM}}_{010}$ mode of the oscillating electromagnetic field in the SRF cavities of the accelerator. A choice of around 180\ifmmode^\circ\else\textdegree…
Role of Chiral Two-Body Currents in Li6 Magnetic Properties in Light of a New Precision Measurement with the Relative Self-Absorption Technique
A direct measurement of the decay width of the excited ${0}_{1}^{+}$ state of $^{6}\mathrm{Li}$ using the relative self-absorption technique is reported. Our value of ${\mathrm{\ensuremath{\Gamma}}}_{\ensuremath{\gamma},{0}_{1}^{+}\ensuremath{\rightarrow}{1}_{1}^{+}}=8.17(14{)}_{\mathrm{stat}.}(11{)}_{\mathrm{syst}.}\text{ }\text{ }\mathrm{eV}$ provides sufficiently low experimental uncertainties to test modern theories of nuclear forces. The corresponding transition rate is compared to the results of ab initio calculations based on chiral effective field theory that take into account contributions to the magnetic dipole operator beyond leading order. This enables a precision test of the im…