0000000000312256
AUTHOR
Anna Sanpera
Operational Quantification of Continuous-Variable Correlations
We quantify correlations (quantum and/or classical) between two continuous variable modes in terms of how many correlated bits can be extracted by measuring the sign of two local quadratures. On Gaussian states, such `bit quadrature correlations' majorize entanglement, reducing to an entanglement monotone for pure states. For non-Gaussian states, such as photonic Bell states, ideal and real de-Gaussified photon-subtracted states, and mixtures of pure Gaussian states, the bit correlations are shown to be a {\em monotonic} function of the negativity. This yields a feasible, operational way to quantitatively measure non-Gaussian entanglement in current experiments by means of direct homodyne d…
Ultracold atomic Bose and Fermi spinor gases in optical lattices
We investigate magnetic properties of Mott-insulating phases of ultracold Bose and Fermi spinor gases in optical lattices. We consider in particular the F=2 Bose gas, and the F=3/2 and F=5/2 Fermi gases. We derive effective spin Hamiltonians for one and two atoms per site and discuss the possibilities of manipulating the magnetic properties of the system using optical Feshbach resonances. We discuss low temperature quantum phases of a 87Rb gas in the F=2 hyperfine state, as well as possible realizations of high spin Fermi gases with either 6Li or 132Cs atoms in the F=3/2 state, and with 173Yb atoms in the F=5/2 state.