0000000000312263
AUTHOR
Martina Fröhlich
Rationale and design of the CRAFT (Continuous ReAssessment with Flexible ExTension in Rare Malignancies) multicenter phase II trial.
Background Approvals of cancer therapeutics are primarily disease entity specific. Current molecular diagnostic approaches frequently identify actionable alterations in rare cancers or rare subtypes of common cancers for which the corresponding treatments are not approved and unavailable within clinical trials due to entity-related eligibility criteria. Access may be negotiated with health insurances. However, approval rates vary, and critical information required for a scientific evaluation of treatment-associated risks and benefits is not systematically collected. Thus clinical trials with optimized patient selection and comprehensive molecular characterization are essential for translati…
Abstract LB-287: Identification of patients at risk for tumor predisposition syndromes based on the evaluation of sporadic cancer exome sequencing data: experiences from the NCT/DKTK MASTER program
Abstract The MASTER (Molecularly Aided Stratification for Tumor Eradication Research) Program of the NCT (National Center for Tumor Diseases) Heidelberg and the DKTK (German Cancer Consortium) is situated at the interface of cancer genomics and clinical oncology to provide whole exome/genome and transcriptome sequencing to selected patients with unmet medical need, and to evaluate the utility of such an approach regarding molecular stratification and individualized, biology-guided treatment. The program has enabled implementation of a shared, DKTK-wide workflow for rapid-turnaround clinical sequencing, comprising all steps from sample processing to reporting of results by a dedicated molecu…
Validating comprehensive next-generation sequencing results for precision oncology : The NCT/DKTK molecularly aided stratification for tumor eradication research experience
Purpose Rapidly evolving genomics technologies, in particular comprehensive next-generation sequencing (NGS), have led to exponential growth in the understanding of cancer biology, shifting oncology toward personalized treatment strategies. However, comprehensive NGS approaches, such as whole-exome sequencing, have limitations that are related to the technology itself as well as to the input source. Hence, clinical implementation of comprehensive NGS in a quality-controlled diagnostic workflow requires both the standardization of sequencing procedures and continuous validation of sequencing results by orthogonal methods in an ongoing program to enable the determination of key test parameter…
Comprehensive Genomic and Transcriptomic Analysis for Guiding Therapeutic Decisions in Patients with Rare Cancers
Abstract The clinical relevance of comprehensive molecular analysis in rare cancers is not established. We analyzed the molecular profiles and clinical outcomes of 1,310 patients (rare cancers, 75.5%) enrolled in a prospective observational study by the German Cancer Consortium that applies whole-genome/exome and RNA sequencing to inform the care of adults with incurable cancers. On the basis of 472 single and six composite biomarkers, a cross-institutional molecular tumor board provided evidence-based management recommendations, including diagnostic reevaluation, genetic counseling, and experimental treatment, in 88% of cases. Recommended therapies were administered in 362 of 1,138 patient…
A Thermodynamic Model of Monovalent Cation Homeostasis in the Yeast Saccharomyces cerevisiae
Cationic and heavy metal toxicity is involved in a substantial number of diseases in mammals and crop plants. Therefore, the understanding of tightly regulated transporter activities, as well as conceiving the interplay of regulatory mechanisms, is of substantial interest. A generalized thermodynamic description is developed for the complex interplay of the plasma membrane ion transporters, membrane potential and the consumption of energy for maintaining and restoring specific intracellular cation concentrations. This concept is applied to the homeostasis of cation concentrations in the yeast cells of S. cerevisiae. The thermodynamic approach allows to model passive ion fluxes driven by the…