0000000000312354

AUTHOR

Alexandra Boreiko

Analysis of the axial filament in spicules of the demosponge Geodia cydonium: different silicatein composition in microscleres (asters) and megascleres (oxeas and triaenes).

The skeleton of the siliceous sponges (Porifera: Hexactinellida and Demospongiae) is supported by spicules composed of bio-silica. In the axial canals of megascleres, harboring the axial filaments, three isoforms of the enzyme silicatein (-alpha, -beta and -gamma) have been identified until now, using the demosponges Tethya aurantium and Suberites domuncula. Here we describe the composition of the proteinaceous components of the axial filament from small spicules, the microscleres, in the demosponge Geodia cydonium that possesses megascleres and microscleres. The morphology of the different spicule types is described. Also in G. cydonium the synthesis of the spicules starts intracellularly …

research product

Silicatein: Nanobiotechnological and Biomedical Applications

Silica-based materials are used in many high-tech products including microelectronics, optoelectronics, and catalysts. Siliceous sponges (Demospongiae and Hexactinellida) are unique in their ability to synthesize silica enzymatically. We have cloned the silica-forming enzymes, silicateins, from both demosponges (marine and freshwater sponges) and hexactinellid sponges. The recombinant enzymes allow the synthesis of silica under environmentally benign ambient conditions, while the technical (chemical) production of silica commonly requires high temperatures and pressures, and extremes of pH. Silicateins can be used for the fabrication of highly-ordered inorganic–organic composite materials w…

research product

Silicateins, the major biosilica forming enzymes present in demosponges: protein analysis and phylogenetic relationship.

Silicateins are enzymes, which are restricted to sponges (phylum Porifera), that mediate the catalytic formation of biosilica from monomeric silicon compounds. The silicatein protein is compartmented in the sponges in the axial filaments which reside in the axial canals of the siliceous spicules. In the present study silicatein has been isolated from the freshwater sponge Lubomirskia baicalensis where it occurs in isoforms with sizes of 23 kDa, 24 kDa and 26 kDa. Since the larger protein is glycosylated we posit that it is a processed form of one of the smaller size forms. The silicatein isoforms are post-translationally modified by phosphorylation; at least four isoforms exist with pI's of…

research product

Fractal-related assembly of the axial filament in the demosponge Suberites domuncula: relevance to biomineralization and the formation of biogenic silica,

Abstract The siliceous spicules of sponges (Porifera) show great variations of sizes, shapes and forms; they constitute the chief supporting framework of these animals; these skeletal elements are synthesized enzymatically by silicatein. Each sponge species synthesizes at least two silicateins, which are termed − α and − β . In the present study, using the demosponge Suberites domuncula , we studied if the silicateins of the axial filament contribute to the shape formation of the spicules. For these experiments native silicateins have been isolated by a new Tris/glycerol extraction procedure. Silicateins isolated by this procedure are monomeric (24 kDa), but readily form dimers through non-…

research product

Identification of a silicatein(-related) protease in the giant spicules of the deep-sea hexactinellid Monorhaphis chuni.

SUMMARYSilicateins, members of the cathepsin L family, are enzymes that have been shown to be involved in the biosynthesis/condensation of biosilica in spicules from Demospongiae (phylum Porifera), e.g. Tethya aurantium and Suberites domuncula. The class Hexactinellida also forms spicules from this inorganic material. This class of sponges includes species that form the largest biogenic silica structures on earth. The giant basal spicules from the hexactinellids Monorhaphis chuni and Monorhaphis intermedia can reach lengths of up to 3 m and diameters of 10 mm. The giant spicules as well as the tauactines consist of a biosilica shell that surrounds the axial canal, which harbours the axial f…

research product

Bioorganic/inorganic hybrid composition of sponge spicules: matrix of the giant spicules and of the comitalia of the deep sea hexactinellid Monorhaphis.

The giant basal spicules of the siliceous sponges Monorhaphis chuni and Monorhaphis intermedia (Hexactinellida) represent the largest biosilica structures on earth (up to 3 m long). Here we describe the construction (lamellar organization) of these spicules and of the comitalia and highlight their organic matrix in order to understand their mechanical properties. The spicules display three distinct regions built of biosilica: (i) the outer lamellar zone (radius: >300 mu m), (ii) the bulky axial cylinder (radius: <75 mu m), and (iii) the central axial canal (diameter: <2 mu m) with its organic axial filament. The spicules are loosely covered with a collagen net which is regularly perforated …

research product

Co-expression and Functional Interaction of Silicatein with Galectin

Sponges (phylum Porifera) of the class of Demospongiae are stabilized by a siliceous skeleton. It is composed of silica needles (spicules), which provide the morphogenetic scaffold of these metazoans. In the center of the spicules there is an axial filament that consists predominantly of silicatein, an enzyme that catalyzes the synthesis of biosilica. By differential display of transcripts we identified additional proteins involved in silica formation. Two genes were isolated from the marine demosponge Suberites domuncula; one codes for a galectin and the other for a fibrillar collagen. The galectin forms aggregates to which silicatein molecules bind. The extent of the silicatein-mediated s…

research product

Axial growth of hexactinellid spicules: Formation of cone-like structural units in the giant basal spicules of the hexactinellid Monorhaphis

The glass sponge Monorhaphis chuni (Porifera: Hexactinellida) forms the largest bio-silica structures on Earth; their giant basal spicules reach sizes of up to 3 m and diameters of 8.5 mm. Previously, it had been shown that the thickness growth proceeds by appositional layering of individual lamellae; however, the mechanism for the longitudinal growth remained unstudied. Now we show, that the surface of the spicules have towards the tip serrated relief structures that are consistent in size and form with the protrusions on the surface of the spicules. These protrusions fit into the collagen net that surrounds the spicules. The widths of the individual lamellae do not show a pronounced size …

research product

Siliceous spicules in marine demosponges (example Suberites domuncula)

All metazoan animals comprise a body plan of different complexity. Since-especially based on molecular and cell biological data-it is well established that all metazoan phyla, including the Porifera (sponges), evolved from a common ancestor the search for common, basic principles of pattern formation (body plan) in all phyla began. Common to all metazoan body plans is the formation of at least one axis that runs from the apical to the basal region; examples for this type of organization are the Porifera and the Cnidaria (diploblastic animals). It seems conceivable that the basis for the formation of the Bauplan in sponges is the construction of their skeleton by spicules. In Demospongiae (w…

research product

Poly(silicate)-metabolizing silicatein in siliceous spicules and silicasomes of demosponges comprises dual enzymatic activities (silica polymerase and silica esterase)

Siliceous sponges can synthesize poly(silicate) for their spicules enzymatically using silicatein. We found that silicatein exists in silica-filled cell organelles (silicasomes) that transport the enzyme to the spicules. We show for the first time that recombinant silicatein acts as a silica polymerase and also as a silica esterase. The enzymatic polymerization/polycondensation of silicic acid follows a distinct course. In addition, we show that silicatein cleaves the ester-like bond in bis(p-aminophenoxy)-dimethylsilane. Enzymatic parameters for silica esterase activity are given. The reaction is completely blocked by sodium hexafluorosilicate and E-64. We consider that the dual function o…

research product

Bio-sintering processes in hexactinellid sponges: Fusion of bio-silica in giant basal spicules from Monorhaphis chuni☆

The two sponge classes, Hexactinellida and Demospongiae, comprise a skeleton that is composed of siliceous skeletal elements (spicules). Spicule growth proceeds by appositional layering of lamellae that consist of silica nanoparticles, which are synthesized via the sponge-specific enzyme silicatein. While in demosponges during maturation the lamellae consolidate to a solid rod, the lamellar organization of hexactinellid spicules largely persists. However, the innermost lamellae, near the spicule core, can also fuse to a solid axial cylinder. Similar to the fusion of siliceous nanoparticles and lamella, in several hexactinellid species individual spicules unify during sintering-like processe…

research product