0000000000313219

AUTHOR

Roland Beyer

showing 3 related works from this author

Neutron transmission measurements at nELBE

2020

International Conference on Nuclear Data for Science and Technology, ND 2019, Bejing, China, 19 May 2019 - 24 May 2019; The European physical journal / Web of Conferences 239, 01006 (2020). doi:10.1051/epjconf/202023901006

Astrophysics::High Energy Astrophysical PhenomenaQC1-999FluxNeutron transmission53001 natural sciences238UNuclear physicsXe0103 physical sciencesNeutronddc:530High pressure gas010306 general physicsPhysicsHe010308 nuclear & particles physicsNePhysicsOPtnELBE time of flight faciltiyneutron total cross sectionstransmission measurementNatBar (unit)
researchProduct

Measurement of the92,93,94,100Mo(γ,n) reactions by Coulomb Dissociation

2016

6th Nuclear Physics in Astrophysics Conference (NPA), Lisbon, Portugal, 19 May 2013 - 24 May 2013; Journal of physics / Conference Series 665, 012034 (2016). doi:10.1088/1742-6596/665/1/012034

PhysicsHistoryPhoton010504 meteorology & atmospheric sciencesIsotopeStable isotope ratiochemistry.chemical_element53001 natural sciencesDissociation (chemistry)Computer Science ApplicationsEducationNuclear physicschemistryNucleosynthesisMolybdenum0103 physical sciencesCoulombddc:530Atomic physics010303 astronomy & astrophysicsProduction chain0105 earth and related environmental sciencesJournal of Physics: Conference Series
researchProduct

Fast-neutron-induced fission cross section of Pu242 measured at the neutron time-of-flight facility nELBE

2019

The fast-neutron-induced fission cross section of $^{242}\mathrm{Pu}$ was measured at the neutron time-of-flight facility $n$ELBE. A parallel-plate fission ionization chamber with novel, homogeneous, large-area $^{242}\mathrm{Pu}$ deposits on Si-wafer backings was used to determine this quantity relative to the IAEA neutron cross-section standard $^{235}\mathrm{U}(n,f)$ in the energy range of 0.5 to 10 MeV. The number of target nuclei was determined from the measured spontaneous fission rate of $^{242}\mathrm{Pu}$. This helps to reduce the influence of the fission fragment detection efficiency on the cross section. Neutron transport simulations performed with geant4, mcnp6, and fluka2011 ar…

Nuclear reactionPhysicsNuclear physicsNeutron transportFissionNuclear TheoryPlutonium-242NeutronNeutron scatteringNuclear ExperimentEnergy (signal processing)Spontaneous fissionPhysical Review C
researchProduct