0000000000313286

AUTHOR

Rainer Hovorka

showing 15 related works from this author

Self-assembly of metallosupramolecular rhombi from chiral concave 9,9'-spirobifluorene-derived bis(pyridine) ligands.

2014

Two new 9,9’-spirobifluorene-based bis(4-pyridines) were synthesised in enantiopure and one also in racemic form. These ligands act as concave templates and form metallosupramolecular [(dppp)2M2L2] rhombi with cis-protected [(dppp)Pd]2+ and [(dppp)Pt]2+ ions. The self-assembly process of the racemic ligand preferably occurs in a narcissistic self-recognising manner. Hence, a mixture of all three possible stereoisomers [(dppp)2M2{(R)-L}2](OTf)4, [(dppp)2M2{(S)-L}2](OTf)4, and [(dppp)2M2{(R)-L}{(S)-L}](OTf)4 was obtained in an approximate 1.5:1.5:1 ratio which corresponds to an amplification of the homochiral assemblies by a factor of approximately three as evidenced by NMR spectroscopy and m…

Stereochemistryconcave templatesSupramolecular chemistrymetal complexesFull Research Paperself-sortingsupramolecular chemistrylcsh:QD241-441lcsh:Organic chemistrysupramolekulaarinen kemialcsh:Scienceta1169LigandChemistryOrganic ChemistryNuclear magnetic resonance spectroscopyself-assemblyPyridine ligandCrystallographyChemistrySelf sortingEnantiopure drug99’-spirobifluorenelcsh:QSelf-assembly9’-spirobifluoreneSingle crystalBeilstein journal of organic chemistry
researchProduct

Self-Sorting Effects in the Self-Assembly of Metallosupramolecular Rhombi from Chiral BINOL-Derived Bis(pyridine) Ligands

2013

Four BINOL-based bis(4-pyridyl) ligands were synthesised in enantiopure and racemic form. These ligands form metallosupramolecular [(dppp)2M2L2] rhombi with cis-protected [(dppp)Pd]2+ and [(dppp)Pt]2+ ions. In principle, racemic ligands can self-assemble into three stereoisomeric rhombi. The degree of self-sorting in the self-assembly process crucially depends on the substitution pattern and the resulting bend angle of the V-shaped ligands as well as the degree of steric crowding within the assembly when racemic ligands are used. Thus, these processes either lead to homochiral assemblies in a narcissistic self-recognition manner, to heterochiral assemblies in a social self-discriminating ma…

Steric effectsAtropisomerEnantiopure drugChemistryStereochemistryOrganic ChemistrySupramolecular chemistrychemistry.chemical_elementSelf-assemblyNuclear magnetic resonance spectroscopyPhysical and Theoretical ChemistryPlatinumPalladiumEuropean Journal of Organic Chemistry
researchProduct

Enantiomerenreine [M6L12]- oder [M12L24]-Polyeder aus flexiblen Bis(pyridin)-Liganden

2014

Materials scienceGeneral MedicineAngewandte Chemie
researchProduct

Enantiomerically pure [M(6)L(12)] or [M(12)L(24)] polyhedra from flexible bis(pyridine) ligands.

2013

Coordination-driven self-assembly is one of the most powerful strategies to prepare nanometer-sized discrete (supra)molecular assemblies. Herein, we report on the use of two constitutionally isomeric BINOL-based bis(pyridine) ligands for this purpose. Upon coordination to Pd(II) ions these self-assemble into enantiomerically pure endo- and exo-functionalized hexa- and dodecanuclear metallosupramolecular spheres with a chiral skeleton depending on the substitution pattern of the BINOL core. These aggregates were characterized by NMR, MS, DLS, TEM, and EELS as well as ECD. Furthermore, experimental ECD data could be compared to those obtained from theoretical simulations using a simplified Ta…

Circular dichroismStereochemistryRotational freedomGeneral ChemistryHEXACatalysisPyridine ligandIonCrystallographychemistry.chemical_compoundPolyhedronchemistryPyridineSelf-assemblyta116Angewandte Chemie (International ed. in English)
researchProduct

Equipping metallo-supramolecular macrocycles with functional groups: Assemblies of pyridine-substituted urea ligands

2012

A series of di-(m-pyridyl)-urea ligands were prepared and characterized with respect to their conformations by NOESY experiments and crystallography. Methyl substitution in different positions of the pyridine rings provides control over the position of the pyridine N atoms relative to the urea carbonyl group. The ligands were used to self-assemble metallo-supramolecular M(2)L(2) and M(3)L(3) macrocycles which are generated in a finely balanced equilibrium in DMSO and DMF according to DOSY NMR experiments and ESI FTICR mass spectrometry. Again, crystallography was used to characterize the assemblies. Methyl substitution in positions next to the pyridine nitrogen prevents coordination, while …

010405 organic chemistryHydrogen bondChemistryStereochemistrySupramolecular chemistryurea ligands; metallo-supramolecular macrocycles; X-ray structure; hydrogen-bonding010402 general chemistryMass spectrometry01 natural sciencesFourier transform ion cyclotron resonance0104 chemical sciencesInorganic ChemistrySubstituted ureaCrystallographychemistry.chemical_compoundPyridineUreaTwo-dimensional nuclear magnetic resonance spectroscopyta116Dalton Transactions
researchProduct

Enantiomerically pure trinuclear helicates via diastereoselective self-assembly and characterization of their redox chemistry.

2014

A tris(bipyridine) ligand 1 with two BINOL (BINOL = 2, 2′-dihydroxy-1, 1′-binaphthyl) groups has been prepared in two enantiomerically pure forms. This ligand undergoes completely diastereoselective self-assembly into D2-symmeteric double-stranded trinuclear helicates upon coordination to copper(I) and silver(I) ions and to D3-symmetric triple-stranded trinuclear helicates upon coordination to copper(II), zinc(II), and iron(II) ions as demonstrated by mass spectrometry, NMR and CD spectroscopy in combination with quantum chemical calculations and X-ray diffraction analysis. According to the calculations, the single diastereomers that are formed during the self-assembly process are strongly …

Circular dichroismStereochemistryLigandDiastereomerchemistry.chemical_elementGeneral ChemistryZincBiochemistryCopperRedoxCatalysisCrystallographyBipyridinechemistry.chemical_compoundColloid and Surface Chemistrychemistrytrinuclear helicates; diastereoselective self-assembly; X-ray diffraction; redox chemistrySelf-assemblyta116Journal of the American Chemical Society
researchProduct

Unexpected self-assembly of a homochiral metallosupramolecular M4L4 catenane

2014

Two enantiomerically pure 9,9'-spirobifluorene-based bis(pyridine) ligands 1 and 2 were prepared to study their self-assembly behavior upon coordination to cis-protected palladium(II) ions. Whereas the sterically more demanding ligand, 2, gave rise to the expected dinuclear metallosupramolecular M2L2 rhombi, the sterically less demanding ligand, 1, acts as a template to give rise to a homochiral metallosupramolecular M4L4 catenane.

Steric effectsLigandStereochemistryOrganic ChemistryCatenanechemistry.chemical_elementGeneral ChemistryCatalysischemistry.chemical_compoundchemistryPyridinePolymer chemistrySelf-assemblyta116PalladiumChemistry: A European Journal
researchProduct

CCDC 945021: Experimental Crystal Structure Determination

2013

Related Article: Christoph Gütz, Rainer Hovorka, Caroline Stobe, Niklas Struch, Filip Topić, Gregor Schnakenburg, Kari Rissanen, Arne Lützen|2014|Eur.J.Org.Chem.|2014|206|doi:10.1002/ejoc.201301314

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu2-(44'-(22'-bis(methoxymethoxy)-11'-binaphthalene-33'-diyl)bispyridine))-bis(propane-13-diylbis(diphenylphosphine))-di-palladium(ii) tetrakis(trifluoromethanesulfonate) dichloromethane tetrahydropyran solvateExperimental 3D Coordinates
researchProduct

CCDC 945019: Experimental Crystal Structure Determination

2013

Related Article: Christoph Gütz, Rainer Hovorka, Caroline Stobe, Niklas Struch, Filip Topić, Gregor Schnakenburg, Kari Rissanen, Arne Lützen|2014|Eur.J.Org.Chem.|2014|206|doi:10.1002/ejoc.201301314

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu2-44'-((22'-bis(methoxymethoxy)-11'-binaphthalene-33'-diyl)diethyne-21-diyl)dipyridine)-bis(propane-13-diylbis(diphenylphosphine))-di-platinum(ii) tetrakis(trifluoromethanesulfonate) tetrahydro-2H-pyran unknown solvateExperimental 3D Coordinates
researchProduct

CCDC 1003004: Experimental Crystal Structure Determination

2014

Related Article: Christoph Gütz , Rainer Hovorka , Niklas Struch , Jens Bunzen , Georg Meyer-Eppler , Zheng-Wang Qu , Stefan Grimme , Filip Topić, Kari Rissanen, Mario Cetina, Marianne Engeser, Arne Lützen|2014|J.Am.Chem.Soc.|136|11830|doi:10.1021/ja506327c

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstris(mu-55'-bis((3'-(22'-bipyridin-5-ylethynyl)-22'-bis(methoxymethoxy)-11'-binaphthalen-3-yl)ethynyl)-22'-bipyridine)-tri-copper hexakis(tetrafluoroborate) acetonitrile tetrahydropyran solvateExperimental 3D Coordinates
researchProduct

CCDC 999739: Experimental Crystal Structure Determination

2014

Related Article: Rainer Hovorka, Georg Meyer-Eppler, Torsten Piehler, Sophie Hytteballe, Marianne Engeser, Filip Topić, Kari Rissanen, Arne Lützen|2014|Chem.-Eur.J.|20|13253|doi:10.1002/chem.201403414

Space GroupCrystallographybis(mu~2~-(R)-22'-(4-Pyridylethynyl)-99'-spirobi[fluorene])-bis(13-bis(diphenylphosphino)propane)-di-palladium(ii) tetrakis(trifluoromethanesulfonate) ethyl acetate unknown solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 971933: Experimental Crystal Structure Determination

2015

Related Article: Rainer Hovorka, Sophie Hytteballe, Torsten Piehler, Georg Meyer-Eppler, Filip Topić, Kari Rissanen, Marianne Engeser, Arne Lützen|2014|Beilstein J.Org.Chem.|10|432|doi:10.3762/bjoc.10.40

Space GroupCrystallographyCrystal SystemCrystal Structurebis(mu-44'-(99'-spirobi[fluorene]-22'-diyl)bispyridine)-bis(13-bis(diphenylphosphino)propane)-di-palladium(ii) tetrakis(trifluoromethanesulfonate) ethyl acetate unknown solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 941094: Experimental Crystal Structure Determination

2013

Related Article: Christoph Gütz, Rainer Hovorka, Caroline Stobe, Niklas Struch, Filip Topić, Gregor Schnakenburg, Kari Rissanen, Arne Lützen|2014|Eur.J.Org.Chem.|2014|206|doi:10.1002/ejoc.201301314

Space GroupCrystallography(mu2-(M)-44'-((22'-bis(Methoxymethoxy)-11'-binaphthalene-66'-diyl)diethyne-21-diyl)dipyridine)-(mu2-(P)-44'-((22'-bis(methoxymethoxy)-11'-binaphthalene-66'-diyl)diethyne-21-diyl)dipyridine)-bis(13-bis(diphenylphosphino)propane)-di-platinum(ii) tetrakis(trifluoromethanesulfonate) unknown solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 945020: Experimental Crystal Structure Determination

2013

Related Article: Christoph Gütz, Rainer Hovorka, Caroline Stobe, Niklas Struch, Filip Topić, Gregor Schnakenburg, Kari Rissanen, Arne Lützen|2014|Eur.J.Org.Chem.|2014|206|doi:10.1002/ejoc.201301314

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu2-44'-((22'-bis(methoxymethoxy)-11'-binaphthalene-33'-diyl)diethyne-21-diyl)dipyridine)-bis(propane-13-diylbis(diphenylphosphine))-di-palladium(ii) tetrakis(trifluoromethanesulfonate) tetrahydro-2H-pyran unknown solvateExperimental 3D Coordinates
researchProduct

CCDC 941095: Experimental Crystal Structure Determination

2013

Related Article: Christoph Gütz, Rainer Hovorka, Caroline Stobe, Niklas Struch, Filip Topić, Gregor Schnakenburg, Kari Rissanen, Arne Lützen|2014|Eur.J.Org.Chem.|2014|206|doi:10.1002/ejoc.201301314

(mu2-(M)-44'-((22'-bis(Methoxymethoxy)-11'-binaphthalene-66'-diyl)diethyne-21-diyl)dipyridine)-(mu2-(P)-44'-((22'-bis(methoxymethoxy)-11'-binaphthalene-66'-diyl)diethyne-21-diyl)dipyridine)-bis(13-bis(diphenylphosphino)propane)-di-palladium(ii) tetrakis(trifluoromethanesulfonate) tetrahydropyran solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct