Comparative study to predict toxic modes of action of phenols from molecular structures.
Quantitative structure-activity relationship models for the prediction of mode of toxic action (MOA) of 221 phenols to the ciliated protozoan Tetrahymena pyriformis using atom-based quadratic indices are reported. The phenols represent a variety of MOAs including polar narcotics, weak acid respiratory uncouplers, pro-electrophiles and soft electrophiles. Linear discriminant analysis (LDA), and four machine learning techniques (ML), namely k-nearest neighbours (k-NN), support vector machine (SVM), classification trees (CTs) and artificial neural networks (ANNs), have been used to develop several models with higher accuracies and predictive capabilities for distinguishing between four MOAs. M…