0000000000313398
AUTHOR
Marianna Safronova
Probing Sizes and Shapes of Nobelium Isotopes by Laser Spectroscopy
Until recently, ground-state nuclear moments of the heaviest nuclei could only be inferred from nuclear spectroscopy, where model assumptions are required. Laser spectroscopy in combination with modern atomic structure calculations is now able to probe these moments directly, in a comprehensive and nuclear-model-independent way. Here we report on unique access to the differential mean-square charge radii of ^{252,253,254}No, and therefore to changes in nuclear size and shape. State-of-the-art nuclear density functional calculations describe well the changes in nuclear charge radii in the region of the heavy actinides, indicating an appreciable central depression in the deformed proton densi…
Level-crossing spectroscopy of the 7, 9, and10D5∕2states ofCs133and validation of relativistic many-body calculations of the polarizabilities and hyperfine constants
We present an experimental and theoretical investigation of the polarizabilities and hyperfine constants of D{sub J} states in {sup 133}Cs for J=3/2 and 5/2. Experimental values for the hyperfine constant A are obtained from level-crossing signals of the (7,9,10)D{sub 5} at {sub {approx}}{sub sol{approx}} at {sub 2} states of {sup 133}Cs and precise calculations of the tensor polarizabilities {alpha}{sub 2}. The results of relativistic many-body calculations for scalar and tensor polarizabilities of the (5-10)D{sub 3} at {sub {approx}}{sub sol{approx}} at {sub 2} and (5-10)D{sub 5} at {sub {approx}}{sub sol{approx}} at {sub 2} states are presented and compared with measured values from the …
Search for New Physics with Atoms and Molecules
This article reviews recent developments in tests of fundamental physics using atoms and molecules, including the subjects of parity violation, searches for permanent electric dipole moments, tests of the CPT theorem and Lorentz symmetry, searches for spatiotemporal variation of fundamental constants, tests of quantum electrodynamics, tests of general relativity and the equivalence principle, searches for dark matter, dark energy and extra forces, and tests of the spin-statistics theorem. Key results are presented in the context of potential new physics and in the broader context of similar investigations in other fields. Ongoing and future experiments of the next decade are discussed.
Quantum technologies and the elephants
Extraordinary progress in quantum sensors and technologies opens new avenues for exploring the Universe and testing the assumptions forming the basis of modern physics. This QST focus issue: focus on quantum sensors for new-physics discoveries is a next-decade roadmap on developing a wide range of quantum sensors and new technologies towards discoveries of new physics. It covers the next generation of various technologies, including atomic and nuclear clocks, atomic and diamond-based magnetometers, atom and laser interferometers, control of trapped atoms, ions, and molecules, optomechanical systems, and many others. In this editorial, we outline major problems of fundamental physics we aim …
Detection of the Lowest-Lying Odd-Parity Atomic Levels in Actinium
Two lowest-energy odd-parity atomic levels of actinium, 7s27pP21/2o, 7s27pP23/2o, were observed via two-step resonant laser-ionization spectroscopy and their respective energies were measured to be 7477.36(4) and 12 276.59(2) cm-1. The lifetimes of these states were determined as 668(11) and 255(7) ns, respectively. In addition, we observed the effect of the hyperfine structure on the line for the transition to P23/2o. These properties were calculated using a hybrid approach that combines configuration interaction and coupled-cluster methods, in good agreement with the experiment. The data are of relevance for understanding the complex atomic spectra of actinides and for developing efficien…
Experimental and theoretical study of thenf-level lifetimes of potassium
The theoretical and experimental values of the 5f ,6 f ,7 f, and 8f radiative lifetimes of neutral potassium are reported. The reduced matrix elements for all allowed electric-dipole nf5/2-nd5/2, nf5/2-nd3/2, and nf7/2-nd5/2 transitions with n =5–8 in K arecalculated using the relativistic linearized coupled-cluster method with single and double excitations of Dirac-Fock wave functions included to all orders in many-body perturbation theory. The resulting electric-dipole matrix elements are used to evaluate the lifetimes of the 5f ,6 f ,7 f, and 8f states in neutral K and their uncertainties. The contributions from the nf5/2-ng7/2, nf7/2-ng7/2, and nf7/2-ng9/2 transitions to the lifetimes o…
Nobelium energy levels and hyperfine structure constants
Advances in laser spectroscopy of superheavy ($Z>100$) elements enabled determination of the nuclear moments of the heaviest nuclei, which requires high-precision atomic calculations of the relevant hyperfine structure (HFS) constants. Here, we calculated the HFS constants and energy levels for a number of nobelium (Z=102) states using the hybrid approach, combining linearized coupled-cluster and configuration interaction methods. We also carried out an extensive study of the No energies using 16-electron configuration interaction method to determine the position of the (5f^{13}7s^2 6d) and (5f^{13}7s^2 7p) levels with a hole in the 5f shell to evaluate their potential effect on the hype…