0000000000313668

AUTHOR

Kristina Froehlich

Size‐Based Cationic Molecular Sieving through Solid‐State Nanochannels

Advanced materials interfaces 8(6), 2001766 (2021). doi:10.1002/admi.202001766

research product

Ionic conduction through single-pore and multipore polymer membranes in aprotic organic electrolytes

Abstract We experimentally characterize the ionic conduction of single and multipore nanoporous membranes in aprotic organic electrolytes. To this end, soft-etched (SE) membranes with pore diameters in the nanometer range and track-etched (TE) membranes with pore diameters in the tens of nanometers range are investigated. In aqueous conditions, the membrane ionic conduction rates follow the same trend of the bulk solution conductivities. However, the ionic transport through the narrow SE-nanopores dramatically decreases in aprotic electrolytes due to the formation of solvated metal cations and their adsorption on the pore surface. The current-voltage recordings of single conical nanopores i…

research product

Effect of cationic polyamidoamine dendrimers on ionic transport through nanochannels

Abstract The effect of polyamidoamine (PAMAM) dendrimers (generations G0–G3) on the ion transport properties of nanochannels (conical and cylindrical) is studied either by surface functionalization or by addition to the electrolyte solution. Surface functionalization with cationic dendrimers lead to inversion of the ion current rectification, indicating the anion selectivity of the modified nanochannels. This anion selectivity increases by immobilizing higher-generation dendrimers, as expected for an increase in the surface density of amino groups. However, compared to PAMAM G2, functionalization with PAMAM G3 results in higher cation and lower anion fluxes. Diffusion experiments of charged…

research product

Fabrication of soft-etched nanoporous polyimide membranes for ionic conduction and discrimination

Abstract Ionic selectivity in nanopores is usually based either on steric or charge exclusion mechanisms. By simultaneously incorporating both mechanisms into a functionalized membrane, an improved control over selectivity can be achieved. We describe the fabrication and experimental characterization of alkali metal cation-selective nanopores in heavy ion-tracked polyimide (PI) membranes using the soft-etching (SE) technique. The latent ion tracks in the PI membrane are selectively dissolved by an organic solvent to form tiny pores without affecting the bulk material. The ionic transport properties of SE-PI membranes are characterized using different electrolyte solutions containing alkali …

research product