0000000000313725
AUTHOR
Lina Von Sydow
An IMEX-Scheme for Pricing Options under Stochastic Volatility Models with Jumps
Partial integro-differential equation (PIDE) formulations are often preferable for pricing options under models with stochastic volatility and jumps, especially for American-style option contracts. We consider the pricing of options under such models, namely the Bates model and the so-called stochastic volatility with contemporaneous jumps (SVCJ) model. The nonlocality of the jump terms in these models leads to matrices with full matrix blocks. Standard discretization methods are not viable directly since they would require the inversion of such a matrix. Instead, we adopt a two-step implicit-explicit (IMEX) time discretization scheme, the IMEX-CNAB scheme, where the jump term is treated ex…
Iterative Methods for Pricing American Options under the Bates Model
We consider the numerical pricing of American options under the Bates model which adds log-normally distributed jumps for the asset value to the Heston stochastic volatility model. A linear complementarity problem (LCP) is formulated where partial derivatives are discretized using finite differences and the integral resulting from the jumps is evaluated using simple quadrature. A rapidly converging fixed point iteration is described for the LCP, where each iterate requires the solution of an LCP. These are easily solved using a projected algebraic multigrid (PAMG) method. The numerical experiments demonstrate the efficiency of the proposed approach. Furthermore, they show that the PAMG meth…