0000000000313937
AUTHOR
Markus Grabolle
Dual emission and excited-state mixed-valence in a quasi-symmetric dinuclear Ru-Ru complex.
The synthesis and characterization of the new dinuclear dipeptide [(EtOOC-tpy)Ru(tpy-NHCO-tpy)Ru(tpy-NHCOCH3)](4+) 3(4+) of the bis(terpyridine)ruthenium amino acid [(HOOC-tpy)Ru(tpy-NH2)](2+) 1(2+) are described, and the properties of the dipeptide are compared to those of the mononuclear complex [(EtOOC-tpy)Ru(tpy-NHCOCH3)](2+) 4(2+) carrying the same functional groups. 3(4+) is designed to serve a high electronic similarity of the two ruthenium sites despite the intrinsic asymmetry arising from the amide bridge. This is confirmed via UV-vis absorption and NMR spectroscopy as well as cyclic voltammetry. 4(2+) and 3(4+) are emissive at room temperature, as expected. Moreover, 3(4+) exhibit…
[Cr(ddpd)2]3+: ein molekulares, wasserlösliches, hoch NIR-lumineszentes Rubin-Analogon
Thermal and Photoinduced Electron Transfer in Directional Bis(terpyridine)ruthenium(II)–(Bipyridine)platinum(II) Complexes
Metalloligands L1 and L2 consisting of directional bis(terpyridine)ruthenium(II) units and bipyridine moieties were constructed by amide formation. From these metalloligands two Ru–Pt heterobimetallic complexes 1 and 2 were derived by a building-block method by means of platination with [PtCl2(dmso)2]. Both bimetallic complexes 1 and 2 feature metal-to-ligand charge transfer (MLCT) absorptions, and emission occurs at room temperature in fluid solution from 3MLCT(Ru) states in all cases. Energy transfer from platinum to ruthenium is observed in 2 but not in 1 (light harvesting). The one-electron-reduced species [1]– and [2]– were prepared by reduction of 1 and 2 with decamethylcobaltocene. E…
[Cr(ddpd) 2 ] 3+ : A Molecular, Water‐Soluble, Highly NIR‐Emissive Ruby Analogue
Bright, long-lived emission from first-row transition-metal complexes is very challenging to achieve. Herein, we present a new strategy relying on the rational tuning of energy levels. With the aid of the large N-Cr-N bite angle of the tridentate ligand ddpd (N,N'-dimethyl-N,N'-dipyridine-2-ylpyridine-2,6-diamine) and its strong σ-donating capabilities, a very large ligand-field splitting could be introduced in the chromium(III) complex [Cr(ddpd)2](3+), that shifts the deactivating and photoreactive (4)T2 state well above the emitting (2)E state. Prevention of back-intersystem crossing from the (2)E to the (4)T2 state enables exceptionally high near-infrared phosphorescence quantum yields a…