0000000000315480

AUTHOR

N. M. Bogoliubov

Exact solution of generalized Tavis - Cummings models in quantum optics

Quantum inverse methods are developed for the exact solution of models which describe N two-level atoms interacting with one mode of the quantized electromagnetic field containing an arbitrary number of excitations M. Either a Kerr-type nonlinearity or a Stark-shift term can be included in the model, and it is shown that these two cases can be mapped from one to the other. The method of solution provides a general framework within which many related problems can similarly be solved. Explicit formulae are given for the Rabi splitting of the models for some N and M, on- and off-resonance. It is also shown that the solution of the pure Tavis - Cummings model can be reduced to solving a homogen…

research product

Solitons ofq-deformed quantum lattices and the quantum soliton

We use the classical N-soliton solution of a q-deformed lattice, the Maxwell-Bloch (MB) lattice, which we reported recently (Rybin A V, Varzugin G G, Timonen J and Bullough R K Year 2001 J. Phys. A: Math. Gen. 34 157) in order, ultimately, to fully comprehend the `quantum soliton'. This object may be the source of a new information technology (Abram I 1999 Quantum solitons Phys. World 21-4). We suggested in Rybin et al 2001 that a natural quantum mechanical matrix element of the q-deformed quantum MB lattice becomes in a suitable limit the classical 1-soliton solution of the classical q-deformed MB lattice explicitly derived by a variant of the Darboux-Backlund method. The classical q-defor…

research product

Quantum and classical integrability: new approaches in statistical mechanics

Abstract The present status of the statistical mechanics (SM), quantum and classical, of integrable models is reviewed by reporting new results for their partition functions Z obtained for anyon type models in one space and one time (1 + 1) dimensions. The methods of functional integration developed already are extended further. Bose-Fermi equivalence and anyon descriptions are natural parts of the quantum theory and the anyon phase is quantised. The classical integrability is exploited throughout and both classical and quantum integrability theory are reviewed this way, and related to underlying algebraic structures - notably the Hopf algebras (“quantum groups”). A new “ q -boson” lattice …

research product

The su(1,1) Tavis-Cummings model

A generic su(1,1) Tavis-Cummings model is solved both by the quantum inverse method and within a conventional quantum-mechanical approach. Examples of corresponding quantum dynamics including squeezing properties of the su(1,1) Perelomov coherent states for the multiatom case are given.

research product

Finite-temperature correlations in the trapped Bose-Einstein gas

There is a large literature (cf. eg. [1, 2]) which, under conditions of translational invariance, has used functional integral methods to calculate, ab initio, the equilibrium finite temperature 2-point correlation functions (Green ’s functions) \[\left\langle {\hat \psi (r,\tau ){{\hat \psi }^\dag }(r',\tau ')} \right\rangle \] \(G\left( {r,r'} \right) \equiv \left\langle {\psi \left( {r,\tau } \right){{{\hat{\psi }}}^{\dag }}\left( {r',\tau '} \right)} \right\rangle \) for a Bose gas in each of d=3, d=2, d=1 space dimensions: (…) means thermal average and τ, τ′ are ‘thermal times’ for which 0<τ,<τ′β and β−1=k B T, T the temperature. These functional integral methods [1, 2] solve the many-…

research product

Critical Behavior for Correlated Strongly Coupled Boson Systems in 1 + 1 Dimensions

The natural integrable correlated strongly coupled boson system in 1 + 1 dimensions is the $q$-boson hopping model; we calculate its critical exponent $\ensuremath{\theta}$ and determine its correlation functions. For small couplings the $q$-boson model has natural connections with the Bose gas and the $\mathrm{XY}$ models of very large spin for which $\ensuremath{\theta}'\mathrm{s}$ and correlators are reported. For large couplings the hopping model is a new phase of interacting bosons substantially different from the impenetrable Bose gas.

research product

Quantum Dynamics of Strongly Interacting Boson Systems: Atomic Beam Splitters and Coupled Bose-Einstein Condensates

An effective boson Hamiltonian applicable to atomic beam splitters, coupled Bose-Einstein condensates, and optical lattices can be made exactly solvable by including all $n$-body interactions. The model can include an arbitrary number of boson components. In the strong interaction limit the model becomes a quantum phase model, which also describes a tight-binding lattice particle. Through exact results for dynamic correlation functions, it is shown how the previous weak interaction dynamics of these systems are extended to strong interactions, now becoming relevant in the experiments. The effect of the number of boson components is also analyzed.

research product