0000000000315619
AUTHOR
Jinxing Xu
Corrigendum to “The monodromy groups of Dolgachev's CY moduli spaces are Zariski dense” [Adv. Math. 272 (2015) 699–742]
The monodromy groups of Dolgachev's CY moduli spaces are Zariski dense
Let $\mathcal{M}_{n,2n+2}$ be the coarse moduli space of CY manifolds arising from a crepant resolution of double covers of $\mathbb{P}^n$ branched along $2n+2$ hyperplanes in general position. We show that the monodromy group of a good family for $\mathcal{M}_{n,2n+2}$ is Zariski dense in the corresponding symplectic or orthogonal group if $n\geq 3$. In particular, the period map does not give a uniformization of any partial compactification of the coarse moduli space as a Shimura variety whenever $n\geq 3$. This disproves a conjecture of Dolgachev. As a consequence, the fundamental group of the coarse moduli space of $m$ ordered points in $\mathbb{P}^n$ is shown to be large once it is not…