0000000000315904
AUTHOR
Holger Kleinke
New binary antimonide Hf5Sb3
Abstract Hf5Sb3 can be prepared by arc-melting of hafnium and previously synthesized HfSb2. It crystallizes like the high-temperature modification of Zr5Sb3 in the Y5Bi3 structure type, space group Pnma, Z=4, a=740.75(9) pm, b=871.8(1) pm, c=1073.6(1) pm, V=693.3(1) 106pm3. An antimonide analogous to the low-temperature form of Zr5Sb3 was not obtained during our investigations. In the structure of Hf5Sb3, the Hf atoms form a three-dimensional network with numerous short Hf–Hf contacts, including the Sb atoms in severely distorted two- and three-capped trigonal prismatic voids. Calculations of the electronic structure, performed with the extended Huckel approximation as well as the TB-LMTO-A…
ChemInform Abstract: Ta4BTe8: Tantalum Telluride Cluster Chains with Encapsulated Boron Atoms.
The new metallic chain compound Ta4BTe8 has been synthesized by high-temperature reactions from the elements. The structure consists of chains of fused B-centered Ta6Te12 clusters (shown in the picture), the individual chains being connected by ditelluride groups. The results of band structure calculations indicate that the interstitial B atoms are required for cluster stability.
ChemInform Abstract: New Binary Antimonide Hf5Sb3 - Differences and Similarities to the Zr Antimonides.
Abstract Hf5Sb3 can be prepared by arc-melting of hafnium and previously synthesized HfSb2. It crystallizes like the high-temperature modification of Zr5Sb3 in the Y5Bi3 structure type, space group Pnma, Z=4, a=740.75(9) pm, b=871.8(1) pm, c=1073.6(1) pm, V=693.3(1) 106pm3. An antimonide analogous to the low-temperature form of Zr5Sb3 was not obtained during our investigations. In the structure of Hf5Sb3, the Hf atoms form a three-dimensional network with numerous short Hf–Hf contacts, including the Sb atoms in severely distorted two- and three-capped trigonal prismatic voids. Calculations of the electronic structure, performed with the extended Huckel approximation as well as the TB-LMTO-A…
Differences and Similarities between the Isotypic AntimonidesMFe1−xSb, ScCo1−xSb, andMNiSb (M=Zr, Hf)
The new antimonides MFe{sub 1{minus}x}Sb can be synthesized by arc-melting of M, Fe, and MSb{sub 2} (M = Zr, Hf). All title compounds crystallize in the TiNiSi structure type (space group Pnma, Z = 4). The lattice parameters of the new phases of MFe{sub 1{minus}x}Sb, as obtained from the bulk samples of the nominal compositions MFeSb, are a = 681.4(1) pm, b = 417.87(7) pm, c = 740.3(1) pm for ZrFe{sub 1{minus}x}Sb and a = 674.0(1) pm, b = 412.0(2) pm, c = 729.7(2) pm for HfFe{sub 1{minus}x}Sb. Under the reaction conditions used, the occupancy factors of the iron position content of ZrFe{sub 1{minus}x}Sb does not exceed 68(1)% (i.e., x = 0.32(1)). Extended Hueckel calculations, performed on …
Ti2Sn3: A Novel Binary Intermetallic Phase, Prepared by Chemical Transport at Intermediate Temperature
Ti2Sn3 was obtained by chemical transport using iodine as the transport agent in a sealed quartz ampule at 500 °C. Its crystal structurea new type structurewas determined via single-crystal structure analysis to be orthorhombic, space group Cmca, a = 595.56(4), b = 1996.4(2), c = 702.81(5) pm, V = 835.6(1) × 106 pm3, and Z = 8. The structure can be derived from a three-dimensional condensation of a single polyhedron, which comprises a Ti atom in the center, surrounded by seven Sn and four Ti atoms forming a tri-capped square antiprism. Supporting the results of the self-consistent band structure calculations, Ti2Sn3 is a metallic p-type conductor, exhibiting Pauli paramagnetism and a specif…
ChemInform Abstract: Nb2Te3, a Niobium Sesquitelluride with Te22- Groups.
The new binary compound Nb2Te3 was synthesized by reduction of NbTe2 with Ga metal; different from the formally analogous Ta2Te3 it crystallizes in the Mo2As3 structure type; based on the results of band structure calculations Nb2Te3 is metallic with quasi one-dimensional metal electronic properties.