0000000000316020

AUTHOR

Daniel Comparat

0000-0001-5884-2882

Design for a high resolution electron energy loss microscope.

International audience; An electron optical column has been designed for High Resolution Electron Energy Loss Microscopy (HREELM). The column is composed of electron lenses and a beam separator that are placed between an electron source based on a laser excited cesium atom beam and a time-of-flight (ToF) spectrometer or a hemispherical analyzer (HSA). The instrument will be able to perform full field low energy electron imaging of surfaces with sub-micron spatial resolution and meV energy resolution necessary for the analysis of local vibrational spectra. Thus, noncontact, real space mapping of microscopic variations in vibrational levels will be made possible. A second imaging mode will al…

research product

Nonlinear effects in optical pumping of a cold and slow atomic beam

By photoionizing hyperfine (HF) levels of the Cs state $6{\phantom{\rule{0.16em}{0ex}}}^{2}{P}_{3/2}$ in a slow and cold atom beam, we find how their population depends on the excitation laser power. The long time (around $180\phantom{\rule{4pt}{0ex}}\ensuremath{\mu}\mathrm{s})$ spent by the slow atoms inside the resonant laser beam is large enough to enable exploration of a unique atom-light interaction regime heavily affected by time-dependent optical pumping. We demonstrate that, under such conditions, the onset of nonlinear effects in the population dynamics and optical pumping occurs at excitation laser intensities much smaller than the conventional respective saturation values. The ev…

research product

Narrow-band pulsed electron source based on near-threshold photoionization of Cs in a magneto-optical trap

The newly developed method of time-of-flight (ToF) momentum microscopy was used to analyse the cold electron emission from a Cs 3D magneto-optical trap (MOT). Three-step resonant photoionization was implemented via two intermediate states (6P3/2 pumped with 852 nm laser and 7S1/2 with 1470 nm) and a tuneable femtosecond Ti:sapphire laser for the final ionization step. The magnetic field of the MOT is switched off during the photoionization step. The natural bandwidth of the fs-laser is reduced to 4 meV using optical spectral filters. Precise tuning of the photon energy makes it possible to observe the transition regime between direct photoemission into the open continuum and field induced i…

research product

Extraction dynamics of electrons from magneto-optically trapped atoms

Pulsed photoionization of laser-cooled atoms in a magneto-optical trap (MOT) has the potential to create cold electron beams of few meV bandwidths and few ps pulse lengths. Such a source would be highly attractive for the study of fast low-energy processes like coherent phonon excitation. To study the suitability of MOT-based sources for the production of simultaneously cold and fast electrons, we study the photoionization dynamics of trapped Cs atoms. A momentum-microscope-like setup with a delay-line detector allows for the simultaneous measurement of spatial and temporal electron distributions. The measured patterns are complex, due to the Lorentz force inducing spiral trajectories. Ray-…

research product