Supervised learning of time-independent Hamiltonians for gate design
We present a general framework to tackle the problem of finding time-independent dynamics generating target unitary evolutions. We show that this problem is equivalently stated as a set of conditions over the spectrum of the time-independent gate generator, thus transforming the task to an inverse eigenvalue problem. We illustrate our methodology by identifying suitable time-independent generators implementing Toffoli and Fredkin gates without the need for ancillae or effective evolutions. We show how the same conditions can be used to solve the problem numerically, via supervised learning techniques. In turn, this allows us to solve problems that are not amenable, in general, to direct ana…
Approximate supervised learning of quantum gates via ancillary qubits
We present strategies for the training of a qubit network aimed at the ancilla-assisted synthesis of multi-qubit gates based on a set of restricted resources. By assuming the availability of only time-independent single and two-qubit interactions, we introduce and describe a supervised learning strategy implemented through momentum-stochastic gradient descent with automatic differentiation methods. We demonstrate the effectiveness of the scheme by discussing the implementation of non-trivial three qubit operations, including a Quantum Fourier Transform (QFT) and a half-adder gate.