0000000000319477

AUTHOR

Ilona Rissanen

0000-0003-4937-1825

Crystallization and preliminary crystallographic analysis of the major capsid proteins VP16 and VP17 of bacteriophage P23-77.

The major capsid proteins VP16 and VP17 of bacteriophage P23-77 have been crystallized using both recombinant and purified virus and preliminary diffraction analyses have been performed.

research product

Purification and crystallization of the two major coat proteins of bacteriophage P23-77 for x-ray crystallography

research product

Fluorescence Properties of the Chromophore-Binding Domain of Bacteriophytochrome from Deinococcus radiodurans

Fluorescent proteins are versatile tools for molecular imaging. In this study, we report a detailed analysis of the absorption and fluorescence properties of the chromophore-binding domain from Deinococcus radiodurans and its D207H mutant. Using single photon counting and transient absorption techniques, the average excited state lifetime of both studied systems was about 370 ps. The D207H mutation slightly changed the excited state decay profile but did not have a considerable effect on the average decay time of the system or the shape of the absorption and emission spectra of the biliverdin chromophore. We confirmed that the fluorescence properties of both samples are very similar in vivo…

research product

The Minor Capsid Protein VP11 of Thermophilic Bacteriophage P23-77 Facilitates Virus Assembly by Using Lipid-Protein Interactions

ABSTRACT Thermus thermophilus bacteriophage P23-77 is the type member of a new virus family of icosahedral, tailless, inner-membrane-containing double-stranded DNA (dsDNA) viruses infecting thermophilic bacteria and halophilic archaea. The viruses have a unique capsid architecture consisting of two major capsid proteins assembled in various building blocks. We analyzed the function of the minor capsid protein VP11, which is the third known capsid component in bacteriophage P23-77. Our findings show that VP11 is a dynamically elongated dimer with a predominantly α-helical secondary structure and high thermal stability. The high proportion of basic amino acids in the protein enables electrost…

research product

An ancient virus type from extreme environments

research product

Bacteriophage P23-77 capsid protein structures reveal the archetype of an ancient branch from a major virus lineage.

Summary It has proved difficult to classify viruses unless they are closely related since their rapid evolution hinders detection of remote evolutionary relationships in their genetic sequences. However, structure varies more slowly than sequence, allowing deeper evolutionary relationships to be detected. Bacteriophage P23-77 is an example of a newly identified viral lineage, with members inhabiting extreme environments. We have solved multiple crystal structures of the major capsid proteins VP16 and VP17 of bacteriophage P23-77. They fit the 14 Å resolution cryo-electron microscopy reconstruction of the entire virus exquisitely well, allowing us to propose a model for both the capsid archi…

research product

Cryo-EM structure of ssDNA bacteriophage ΦCjT23 provides insight into early virus evolution.

AbstractThe origin of viruses remains an open question. While lack of detectable sequence similarity hampers the analysis of distantly related viruses, structural biology investigations of conserved capsid protein structures facilitate the study of distant evolutionary relationships. Here we characterize the lipid-containing ssDNA temperate bacteriophage ΦCjT23, which infects Flavobacterium sp. (Bacteroidetes). We report ΦCjT23-like sequences in the genome of strains belonging to several Flavobacterium species. The virion structure determined by cryogenic electron microscopy reveals similarities to members of the viral kingdom Bamfordvirae that currently consists solely of dsDNA viruses wit…

research product