0000000000319478

AUTHOR

Thomas Boller

showing 4 related works from this author

Proteome adaptations under contrasting soil phosphate regimes of Rhizophagus irregularis engaged in a common mycorrhizal network.

2021

International audience; For many plants, their symbiosis with arbuscular mycorrhizal fungi plays a key role in the acquisition of mineral nutrients such as inorganic phosphate (Pi), in exchange for assimilated carbon. To study gene regulation and function in the symbiotic partners, we and others have used compartmented microcosms in which the extra-radical mycelium (ERM), responsible for mineral nutrient supply for the plants, was separated by fine nylon nets from the associated host roots and could be harvested and analysed in isolation. Here, we used such a model system to perform a quantitative comparative protein profiling of the ERM of Rhizophagus irregularis BEG75, forming a common my…

Hyphal growthRhizophagus irregularisProteomicsProteomeNitrogen[SDV]Life Sciences [q-bio]Glyoxylate cyclemycorrhizal symbiosisMicrobiologyPlant RootsPhosphatesFungal Proteins03 medical and health sciencesSoilNutrientcommon mycelial networkSymbiosisGeneticsMycorrhizal networkSymbiosisMycelium030304 developmental biology2. Zero hungerphosphate nutrition0303 health sciencesbiology030306 microbiologyfungiFungi15. Life on landextra-radical myceliumbiology.organism_classificationshotgun proteomicBiochemistryProteomeFungal genetics and biology : FGB
researchProduct

Transcriptome analysis of the Populus trichocarpa–Rhizophagus irregularis Mycorrhizal Symbiosis: Regulation of Plant and Fungal Transportomes under N…

2017

Nutrient transfer is a key feature of the arbuscular mycorrhizal (AM) symbiosis. Valuable mineral nutrients are transferred from the AM fungus to the plant, increasing its fitness and productivity, and, in exchange, the AM fungus receives carbohydrates as an energy source from the plant. Here, we analyzed the transcriptome of the Populus trichocarpa-Rhizophagus irregularis symbiosis using RNA-sequencing of non-mycorrhizal or mycorrhizal fine roots, with a focus on the effect of nitrogen (N) starvation. In R. irregularis, we identified 1,015 differentially expressed genes, whereby N starvation led to a general induction of gene expression. Genes of the functional classes of cell growth, memb…

0106 biological sciences0301 basic medicineRhizophagus irregularisMICROBE INTERACTIONSPhysiologyarbuscule[SDV]Life Sciences [q-bio]racine finePlant Science01 natural sciencesnitrogenTranscriptomeGene Expression Regulation PlantMycorrhizaeLOTUS-JAPONICUSGLOMUS-INTRARADICESPlant ProteinsGENE-EXPRESSION2. Zero hungerazotePHOSPHATE TRANSPORTERAMMONIUM TRANSPORTERSorgan transplantationGeneral Medicinefood shortageMedicago truncatulaArbuscular mycorrhizasymbiose mycorhiziennePopulusfamineEnergy sourceARBUSCULAR MYCORRHIZABiologySULFUR STARVATION03 medical and health sciencesPHOSPHORUS ACQUISITIONSymbiosistransport de nutrimentsBotanySymbiosisGene Expression Profilingblack cottonwoodCell Biologybiology.organism_classificationMEDICAGO-TRUNCATULATransplantationpopulus trichocarpa030104 developmental biologyMembrane biogenesis010606 plant biology & botanytransplantation
researchProduct

Expression of Sorghum bicolor ammonium transporters upon colonization with arbuscular mycorrhizal fungi

2012

Arbuscular mycorrhizal fungi (AMF) are important plant symbionts, trading mineral nutrients beyond the reach of roots, in particular ammonium, in exchange to their host’s photosynthetic products. Sorghum bicolor is one of the world's leading cereal crops, providing food, fibre and fuel across a range of environments and production systems. It has a particular ability to be productive even under strongly adverse conditions, tolerating much more severe drought than most other grain crops. As its genome has recently been sequenced, we have characterized all eight members of the ammonium transporter (AMT) family and studied their expression in different tissues of field-grown plants. While most…

[SDV] Life Sciences [q-bio][SDE] Environmental Sciencessorghum bicolorammonium transporters (AMT)[SDV]Life Sciences [q-bio]fungi[SDE]Environmental Sciencesfood and beverages[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal Biologyarbuscular mycorrhizal fungiglomus mosseae
researchProduct

Expression of Sorghum bicolor ammonium transporters upon colonization with arbuscular mycorrhizal fungi

2012

[SDV] Life Sciences [q-bio][SDE] Environmental Sciencesmycorrhizalsorghum bicolor[SDV]Life Sciences [q-bio][SDE]Environmental Sciencesarbuscular
researchProduct