0000000000319520
AUTHOR
Michael M. Neumann
On the stability of the localized single-valued extension property under commuting perturbations
This article concerns the permanence of the single-valued extension property at a point under suitable perturbations. While this property is, in general, not preserved under sums and products of commuting operators, we obtain positive results in the case of commuting perturbations that are quasi-nilpotent, algebraic, or Riesz operators.
Automatic continuity of generalized local linear operators
In this note, we present a general automatic continuity theory for linear mappings between certain topological vector spaces. The theory applies, in particular, to local operators between spaces of functions and distributions, to algebraic homomorphisms between certain topological algebras, and to linear mappings intertwining generalized scalar operators.