0000000000319759
AUTHOR
Mati Kook
ORR Activity and Stability of Co-N/C Catalysts Based on Silicon Carbide Derived Carbon and the Impact of Loading in Acidic Media
This work was supported by the EU through the European Regional Development Fund under projects TK141 “Advanced materials and high-technology devices for energy recuperation systems” (2014-2020.4.01.15-0011), NAMUR ”Nanomaterials - research and applications” (3.2.0304.12-0397) and by the Estonian institutional research grant No. IUT20-13.
Magnetic and optical properties in degenerated transition metal and Ga co-substituted ZnO nanocrystals
Abstract In order to study the influence of itinerant electrons on magnetic properties of transition metal substituted ZnO nanocrystals, nanopowders containing different amounts of Ga and fixed amounts of Fe, Ni and Mn ions were synthesized. The ions of different transition metals and Ga were successfully introduced into the ZnO structure using solvothermal synthesis method. X-ray diffraction, scanning electron microscopy, hard X-ray photoelectron spectroscopy and Rietveld refinement were used to characterize the synthesized nanocrystals. Optical measurements revealed that Ga substitution can change the light transmittance/absorption in the infrared part of the electromagnetic light spectru…
Facile synthesis of magnetically separable CoFe2O4/Ag2O/Ag2CO3 nanoheterostructures with high photocatalytic performance under visible light and enhanced stability against photodegradation
Riga Technical University supported the preparation of this manuscript from the Scientific Research Project Competition for Young Researchers No. ZP-2016/7. The authors wish to kindly acknowledge the financial support of HZB, Estonian Research Council (PUT1096, PUT735 and IUT2-25) and Estonian Centre of Excellence in Research Project “Advanced materials and high-technology devices for sustain-able energetics, sensorics and nanoelectronics” TK141 (2014–2020.4.01.15-0011).
Solvothermal synthesis derived Co-Ga codoped ZnO diluted magnetic degenerated semiconductor nanocrystals
Authors kindly acknowledge to the Estonian Research Council ( PUT1096 , IUT2-25 , PUT735 ), the Estonian Centre of Excellence in Research project “Advanced materials and high-technology devices for sustainable energetics, sensorics and nanoelectronics (TK141), and the financial support of HZB. We are grateful to the staff of BESSY II for the assistance and co-operation during the synchrotron-based measurements.
Performance and characterization of the FinEstBeAMS beamline at the MAX IV Laboratory
European Regional Development Fund (grant No. TK-141 HiTechDevices 2014-2020.4.01.15-0011 to University of Tartu; grant No. MAX-TEENUS 2014-2020.4.01.20-0278 to University of Tartu; grant No. Eesti Kiirekanal SLOFY11156T/1 to University of Tartu); Estonian Research Council (grant No. PRG-629 to University of Tartu); Jane & Aatos Erkko Foundation (grant No. SOFUS); Business Finland (grant No. 1464/31/2019); Academy of Finland (grant No. 319042; grant No. 326461; grant No. 326406; grant No. 320165); University of Oulu; University of Turku; Tampere University; University of Tartu.