0000000000319765

AUTHOR

Urmas Joost

ORR Activity and Stability of Co-N/C Catalysts Based on Silicon Carbide Derived Carbon and the Impact of Loading in Acidic Media

This work was supported by the EU through the European Regional Development Fund under projects TK141 “Advanced materials and high-technology devices for energy recuperation systems” (2014-2020.4.01.15-0011), NAMUR ”Nanomaterials - research and applications” (3.2.0304.12-0397) and by the Estonian institutional research grant No. IUT20-13.

research product

Switchable Light Reflectance in Dilute Magneto-Optical Colloids Based on Nickel Ferrite Nanowires

research product

Aqueous synthesis of Z-scheme photocatalyst powders and thin-film photoanodes from earth abundant elements

Riga Technical University supported the preparation of this manuscript from the Scientific Research Project Competition for Young Researchers No. ZP 2017/8

research product

Photocatalytic activity of anatase-nickel ferrite heterostructures

The simple co-precipitation route was used to couple commercial TiO2 anatase nanopowder with nickel ferrite (NiFe2O4). The morphology and the crystalline structure of composite nanoparticles were characterised by TEM, N2 adsorption-desorption, XRD and Rietveld refinement, XPS and XAS. The optical and magnetic properties were investigated. After co-precipitation NiFe2O4 nanoparticles, composed of spinel ferrite crystal phase, were formed on the surface of TiO2 anatase nanopowder. The TiO2/NiFe2O4 composite oxide demonstrated large specific surface area, high visible light absorption efficiency and efficient charge carrier separation, compared to pristine anatase TiO2 or pristine NiFe2O4, rep…

research product

Strong, Rapid and Reversible Photochromic Response of Nb doped TiO2 Nanocrystal Colloids in Hole Scavenging Media

Understanding photochromicity is essential for developing new means of modulating the optical properties and optical response of materials. Here, we report on the synthesis and exciting new photochromic behavior of Nb5+ doped TiO2 nanoparticle colloids (NCs). We find that in hole scavenging media, Nb5+ doping significantly improves the photochromic response time of TiO2 nanoparticles. In the infrared regime, Nb-doped TiO2 NCs exhibit an order of magnitude faster photoresponse kinetics than the pristine TiO2. Enhanced photochromic response is observed in the visible light regime as well. The transmittance of Nb-doped TiO2 NCs drops to 10% in less than 2 minutes when irradiated by UV light in…

research product

Fe-N/C catalysts for oxygen reduction based on silicon carbide derived carbon

This work was supported by the projects TK141 “Advanced materials and high-technology devices for energy recuperation systems” (2014-2020.4.01.15-0011), NAMUR “Nanomaterials - research and applications” (3.2.0304.12-0397) and by the Estonian Institutional Research Grant No. IUT20-13.

research product

Facile synthesis of magnetically separable CoFe2O4/Ag2O/Ag2CO3 nanoheterostructures with high photocatalytic performance under visible light and enhanced stability against photodegradation

Riga Technical University supported the preparation of this manuscript from the Scientific Research Project Competition for Young Researchers No. ZP-2016/7. The authors wish to kindly acknowledge the financial support of HZB, Estonian Research Council (PUT1096, PUT735 and IUT2-25) and Estonian Centre of Excellence in Research Project “Advanced materials and high-technology devices for sustain-able energetics, sensorics and nanoelectronics” TK141 (2014–2020.4.01.15-0011).

research product

Colorimetric gas detection by the varying thickness of a thin film of ultrasmall PTSA-coated TiO2 nanoparticles on a Si substrate

Financial support from the Estonian Research Council (IUT2-25, PUT170, PUT1096, PUT748, PUTJD680), the Estonian Centre of Excellence in Research Projects “Advanced materials and high-technology devices for sustainable energetics, sensorics and nanoelectronics” TK141 (2014-2020.4.01.15-0011), “Emerging orders in quantum and nanomaterials” TK134 and the Development Fund of the University of Tartu, are all gratefully acknowledged.

research product

Solvothermal synthesis derived Co-Ga codoped ZnO diluted magnetic degenerated semiconductor nanocrystals

Authors kindly acknowledge to the Estonian Research Council ( PUT1096 , IUT2-25 , PUT735 ), the Estonian Centre of Excellence in Research project “Advanced materials and high-technology devices for sustainable energetics, sensorics and nanoelectronics (TK141), and the financial support of HZB. We are grateful to the staff of BESSY II for the assistance and co-operation during the synchrotron-based measurements.

research product

Co doped ZnO nanowires as visible light photocatalysts

Abstract High aspect ratio cobalt doped ZnO nanowires showing strong photocatalytic activity and moderate ferromagnetic behaviour were successfully synthesized using a solvothermal method and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), vibrating sample magnetometry (VSM) and UV–visible absorption spectroscopy. The photocatalytic activities evaluated for visible light driven degradation of an aqueous methylene orange (MO) solution were higher than for Co doped ZnO nanoparticles at the same doping level and synthesized by the same synthesis route. The rate constant for MO visi…

research product

Reversible Photodoping of TiO2 Nanoparticles for Photochromic Applications

Financial support from the Estonian Research Council (IUT2-25, IUT2-26, and PUTJD680) is gratefully acknowledged. This work was supported by the Academy of Finland (decision numbers 141481 and 286713) and by the EU through the European Regional Development Fund (Center of Excellence for Zero Energy and Resource Efficient Smart Buildings and Districts-ZEBE, 2014-2020.4.01.15-0016). Work is supported by the Latvian Academy of Sciences in the framework of FLPP (Plasmonic oxide quantum dots for energy saving smart windows, lzp-2018/1-0187).

research product